7.3 – Sanitizer and Oxidizer Product Information Summaries

John A. Wojtowicz *Chemcon*

Summary sheets containing product description, properties, and performance data for various sanitizers, oxidizers, and sanitation systems shown below are based on the following published papers:

- Wojtowicz, J. A., "Survey of Swimming Pool/Spa Sanitizers and Sanitation Systems", Journal of the Swimming Pool and Spa Industry 4(1)2001:9-29.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of Swimming Pools and Spas", Journal of the Swimming Pool and Spa Industry 4(1)2001:41 - 53.

Some of the categories covered in the summaries include: disinfection, algae control, oxidation of contaminants, cost, and cost effectiveness.

- 1. Chlorine
- 2. Bromine
- 3. Ozone: Data on Disinfection and Oxidation
- 4. Ultraviolet (UV) Ozone
- 5. Corona Discharge (CD) Ozone (DIN Design)
- 6. Corona Discharge (CD) Ozone (Modified DIN Design)
- 7. Copper, Silver, and Zinc
- 8. Copper-Silver Ionizers
- 9. Copper-Silver Cartridges
- 10. Zinc-Silver Cartridges
- 11. Potassium Monopersulfate
- 12. Potassium Peroxydisulfate (Persulfate)
- 13. Polyhexamethylene Biguanide (PHMB)
- 14. Ultraviolet Light (UV) and Hydrogen Peroxide
- 15. Reaction of Ancillary Chemicals with Chlorine and Bromine

		1. CHLORINE								
Sources	1	Form	% Av. CI	\$/Ib av. CI						
	Chlorine	Liquefied Gas	100	<1.00						
	Calcium Hypochlorite	Granular & Tablets	65 (75)	2.77						
	Lithium Hypochlorite	Granular	35	~8.50						
	Sodium Hypochlorite	Liquid	10	~1.50						
	Sodium Dichloroisocyanura		56 (63)	3.21						
	Trichloroisocyanuric Acid	Granular & Tablets	90	2.22						
Active Agent	•At pool pH, all chlorine produ									
	•FAC consists of the disinfecta			e ion (CIO ⁻)						
	•The concentration of HOCl is) 1011 (010-).						
	$HOCI \rightleftharpoons H^{+} + CIO^{-}$ Ionization			at 25°C						
	$[HOCI]/[CIO^{-}] = [H^{+}]/K_A = 10^{-pt}$		JOI] - 2.00 X 10	at 25 C						
Decomposition				\ := = f= = == d	41					
By Sunlight	Unstabilized chlorine is more									
by Sunlight	photoinstability of hypochlorite	ion, which has maximum at	osorption at 290 n	m but absorbs UV light	t out to					
Stabilization	350 nm.			-1-4						
Stabilization	Chlorine is stabilized by cyan									
	monochloroisocyanurate ion, v				nicai					
Dialusta attau	decomposition is ~1-2%/day a									
Disinfection	Effect of pH	Disinfection rate changes	with pH due to th	e changing ratio						
		[HOCI]/[CIO ⁻].								
		 Increased ionization of Ho 		s offset by increased						
		hydrolysis of chloroisocyar								
	Effect of Temperature	 Disinfection rate increase 								
	Effect of Cyanuric Acid	 Decreases disinfection ra 	te by reducing the	equilibrium conc. of H	IOCI.					
	Effect of Ammonia and									
	Amino-N Compounds chlorine, CAC) that strongly bind HOCI.									
	Effect of Microorganism	Ct (5°C, pH 6-7)	99% Kill Time t (min.)							
	_	Hoff 1986	C = 0.5 ppm av. Cl							
	E. coli	0.034-0.05	0.068-0.10							
	Polio 1	1.1–2.5	2.2–5.0							
	Rotavirus	0.01-0.05		0.02-0.10						
NSPI Recom-		Minimum	ldeal	Maximu	um					
Mendations	FAC (ppm): Pools	1	2-4	10						
	FAC (ppm): Spas	2	3-5	10						
*100-120 ppm	CAC (ppm)	0	0	0.2						
for chloroiso-				0.2						
	Cyanuric Acid (ppm)	10	30–50	150						
cyanurate or	Cyanuric Acid (ppm)		30–50	150						
cyanurate or bromine treated	pH	10 7.2 60	30–50 7.4–7.6							
cyanurate or	pH Carbonate Alkalinity (ppm)	7.2	30–50	150 7.8 180						
cyanurate or bromine treated pools.	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm)	7.2 60 150	30–50 7.4–7.6 80–100* 200–400	150 7.8 180 500–1,00						
cyanurate or bromine treated	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r	7.2 60 150 nany species of algae <u>(Palm</u>	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1	150 7.8 180 500–1,00	00+					
cyanurate or bromine treated pools.	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r •A newly formed green algae	7.2 60 150 nany species of algae (Palmoloom can be completely oxi	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1	150 7.8 180 500–1,00	00+					
cyanurate or bromine treated pools.	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r •A newly formed green algae chlorine, eg, 1 lb calcium hypo	7.2 60 150 nany species of algae (Palmoloom can be completely oxichlorite per 10,000 gals.	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single	150 7.8 180 500–1,0 955). shock dose of hypochl	00+ orite					
cyanurate or bromine treated pools.	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r •A newly formed green algae chlorine, eg, 1 lb calcium hypo •An infestation of black algae	7.2 60 150 nany species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wi	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single	150 7.8 180 500–1,0 955). shock dose of hypochl	00+ orite					
cyanurate or bromine treated pools. Algae Control	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r •A newly formed green algae chlorine, eg, 1 lb calcium hypo •An infestation of black algae in combination with brushing a	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming.	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single	150 7.8 180 500–1,0 955). shock dose of hypochlorite ch	00+ orite					
cyanurate or bromine treated pools. Algae Control Oxidation of	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the second of the	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming.	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock c	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chlorite, etc.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the second of the	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chitinine, etc. nloramine) are potentia	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the second of the s	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. tts such as ammonia, urea, at to form chloramines, some es absorb UV light and are the	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trichherefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chitinine, etc. nloramine) are potentia	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the chlorine, eg, 1 lb calcium hyporal or to the chlorine, eg, 1 lb calcium hyporal or to the chlorine oxidizes contaminare. •Chlorine oxidizes contaminare. •Ammonia reacts with chlorine irritants. •Ammonia chloraminare. •Ammonia is oxidized via brea	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some es absorb UV light and are the light of the such can usually be the light of the light and the light of the lig	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trichherefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chitinine, etc. nloramine) are potentia	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the second of the	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, as to form chloramines, some as absorb UV light and are the likpoint chlorination via the 3H ₂ O	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock d amino acids, creat of which (eg, trich herefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chlorine, etc. hloramine) are potential osed by sunlight.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	pH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to r •A newly formed green algae in chlorine, eg, 1 lb calcium hypo •An infestation of black algae in combination with brushing a •Chlorine oxidizes contaminar •Ammonia reacts with chlorine irritants. •Ammonia chloramine •Ammonia is oxidized via brea 2NH₃ + 3HOCl → N₂ + 3HCl • For example, 0.25 ppm ammonia chloramine	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some es absorb UV light and are the light chlorination via the 3H ₂ O onia N (1.26 ppm CAC as m	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chlorine, etc. hloramine) are potential osed by sunlight.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	PH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the end of th	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some es absorb UV light and are the such as a to form chloramines, and are the such as a such as a mand are the such as a such as a mand are the such as a such as	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chloramine, etc. nloramine) are potential osed by sunlight.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	PH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the example of	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, as to form chloramines, some es absorb UV light and are the substitution of the substi	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chloramine, etc. nloramine) are potential osed by sunlight.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	PH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or to the end of th	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, as to form chloramines, some es absorb UV light and are the substitution of the substi	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chloramine, etc. nloramine) are potential osed by sunlight.	00+ orite lorine					
cyanurate or bromine treated pools. Algae Control Oxidation of	PH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or the second of the se	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some es absorb UV light and are the such as a mand 20–25°C (Wojtowicz 19) Impounds is slower, the read a > creatinine is the most economical and of	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo e overall reaction: conochloramine) is 199). ction rate varying in cost effective meth	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chloring, etc. hloramine) are potential osed by sunlight. s 87% oxidized by 3.55 in the following order:	onte lorine l eye ppm and spa					
cyanurate or bromine treated pools. Algae Control Oxidation of Contaminants	PH Carbonate Alkalinity (ppm) Calcium Hardness (ppm) •Chlorine at 2 ppm is toxic to real or the second of the se	7.2 60 150 many species of algae (Palmoloom can be completely oxichlorite per 10,000 gals. can usually be eradicated wind vacuuming. Its such as ammonia, urea, at to form chloramines, some es absorb UV light and are the such as a mand 20–25°C (Wojtowicz 19) Impounds is slower, the read a > creatinine is the most economical and of	30–50 7.4–7.6 80–100* 200–400 ner and Maloney 1 idized by a single ith a triple shock of amino acids, creat of which (eg, trich herefore decompo e overall reaction: conochloramine) is 199). ction rate varying in cost effective meth	150 7.8 180 500–1,00 1955). shock dose of hypochlorite chloring, etc. hloramine) are potential osed by sunlight. s 87% oxidized by 3.55 in the following order:	onte lorine l eye ppm					

			2. BROMINE							
Sources	Bromine	Compounds	Form	% Equiv. Av	. CI \$ per lb Equiv. Av. CI					
	(BC	methylhydantoin DMH) r, 28.2% av. Cl	Granular Tablets 90.4% pur	ity						
	Dibromodim	ethylhydantoin	Granular Tablets	`	ical) Not Available					
Generation of Bromine	 Bromine can be generated in situ from bromide ion plus oxidizing agents such as hypochlorites, chloroisocyanurates, monopersulfate, ozone, or electrical energy. 									
Active Agent	 At pool pH, all bromine products provide free available bromine, ie, the disinfectant hypobromous acid (HOBr) as well as hypobromite ion (BrO⁻). The concentration of HOBr is controlled by the equilibrium: HOBr									
Decomposition by Sunlight	hours due to the absorbs UV light	photoinstability out to about 390	of hypobromite io nm	n, which has maxim	d by sunlight (≥290 nm) in 3 um absorption at 330 nm but					
Decomposition by Hypochlorite	forms NCI ₃ , CO ₂	, and N-chloroiso	propylamine,		H, eg, dichlorodimethylhydantoin					
Stabilization Wojtowicz 2000	decomposition fr	om ~100% to 75°	% in four hours.		50 ppm DMH reduces					
Factors Affecting Disinfection	Effect of pH	ppm cyanuric a	•Although the di ratio [HOBr]/[Br0		ges with pH due to the changing e to pH than in the case of					
	Effect of Tempe	erature	•As with HOCl, disinfection rate increases with temperature.							
	Effect of Dimeth	nylhydantoin	Decreases disinfection rate by reducing the equilibrium concentration of HOBr.							
	Effect of Ammo Amino-N Comp	nia and ounds	Disinfection rate decreases by formation of bromamines (combined bromine) that are about half as effective as free bromine but are less stable than chloramines.							
Disinfection Data Gerba & Naranjo 1999	•On a ppm basis, bromine is a less effective bactericide than chlorine, eg, 3 ppm FAC from hypochlorite provided 99.99% inactivation of <i>S. faecalis</i> and <i>P. aeruginosa</i> after 2 minutes at 25°C and pH 7.5.									
		•By comparison, 5 ppm electrogenerated bromine (EGB) provided 92.8 and 85.5 % inactivation under the same conditions (see below).								
				ppm Free Av. Bron	mine, 25°C, pH 7.5)					
	Time (min)		ecalis	FOR	P. aerugenosa					
	Time (min.)	EGB 92.8	BCDMH 66.1	EGB 85.5	BCDMH 85.2					
	4	99.9	99.8	99.99	99.8					
NSPI Recom-		00.0	Minimum	Ideal	Maximum					
mendations	Free Av. Br (pp	m): Pools & Spa		4-6	10					
	pH	,	7.2	7.4–7.6	7.8					
	Carbonate Alka	linity (ppm)	60	100-120	180					
	Calcium Hardne		150	200-400	500-1,000+					
Algae Control		, bromine is toxic								
Oxidation of				a and urea faster tha	an chlorine.					
Contaminants	•The oxidation o	f ammonia is sim → N ₂ + 3HBr + 3H	ilar to breakpoint							
	As with chloring following order: a	•As with chlorine, oxidation of other nitrogen compounds is slower, the reaction rate varying in the following order: ammonia > amino acids > urea > creatinine.								
Eye and Skin	•Ammonia brom	amines are less i	rritating to the ey	es than chloramines	<u></u>					
Irritation	(British Medical	Journal 13 Augus	t 1983).		and spas treated with BCDMH					
Cost	•Bromine sanitat	ion is more expe	nsive than chlori	ne sanitation.						

Ozone Disinfection Data

Hoff 1986

3. OZONE: DATA ON DISINFECTION AND OXIDATION

•Although ozone is a broad-spectrum disinfectant (see data below), the disinfection rate can be affected by presence of readily oxidizable matter.

Microorganism	Ct (ppmemin) @ 5°C and 6-7 pH
E.coli	0.02
Polio 1	0.1–0.2
Rotavirus	0.006-0.06
G. Lamblia cysts	0.5–0.6
G. Mutis cysts	1.8–2.0

Laboratory Data at ~22°C and pH 7.5 on Oxidation of Swimming Pool/Spa Contaminants at High Contaminant and Ozone Concentrations (Woitowicz 1989).

Cont	aminant	Ozone	Reaction Time	Mols Ozone	Consumed per Mol Contaminant
	Conc. (ppm)	ppm	Mins.	Theoretical	Calc'd.*(Found)
Urea	26.9	12.4	68	8	0.03 (0.01)
Ammonia	1.6	11.4	55	4	0.2 (0.3)
Glycine	6.7	13.8	13	7	3.2 (2.9)
Creatinine	10.1	14.5	72	18	1.6 (0.3)

*Based on published rate constants (Hoigne et al 1983-1985).

•Calculated data for some bather contaminants are based on 1 ppm total N, 1 ppm CD ozone, and a 2-minute reaction time using published rate constant data at 25°C.

	Calculated Data on Oxidation of Contaminants									
Contaminant	Nitrogen	Calc'd. % Contaminant Oxidation								
	ppm	ppm								
Urea	0.876	1.877	0.002							
Monochloramine	0.0443	0.163	2.2							
Glycine	0.0433	0.232	14 ^A							
Creatinine	0.0363	0.098	0.03							

A) Byproducts ammonia and formaldehyde are largely unoxidized.

Comparative Calculated Data on Oxidation of Contaminants

Initial Contaminant Oxidation Rate (% per min.) ^A								
Contaminant	Ozone		Chlorine ^D	Bromine ^D				
	1.6 ppb ^B	1.0 ppm ^c	2.3 ppm	4.6 ppm				
Ammonim ion	0	0	3.8	7.9				
Ammonia	1.6x10 ⁻⁵	0.01	3.8	7.9				
Monochloramine	1.7x10 ⁻³	1.1	>3.8	>7.9				
Urea	1.3x10 ⁻⁶	8x10 ⁻⁴	0.11	0.23				
Creatinine ^E	1.1x10 ⁻⁵	7x10 ⁻³	0.06	0.04				
Glycine ^Ŀ	1.5x10 ⁻²	1.7	0.33	>2.6				

A) pH 7.5, 20-25°C, 0.25 ppm bound nitrogen per contaminant. B) Calculated data for steady state UV ozone concentration in spas. C) Calculated for initial CD ozone conc. in swimming pool contact chamber. D) Experimental data (Wojtowicz 1998 and 2000). E) For decomposition to CO₂ and nitrate for ozone and CO₂ and nitrogen for chlorine.

Summary of Ozone's Oxidative Capabilities

- •Despite its high oxidation potential (2.07 volts), the reactivity of ozone toward organic matter varies widely (over 10 orders of magnitude) and depends on the original functionality of a compound as well as that of its byproducts, eg, the initial rate constant for oxidation of the amino acid α -alanine is $6.4x10^4$ L/mol/sec. whereas that for the byproducts ammonia, acetaldehyde, and acetic acid are 20, 1.5, and $\leq 3x10^{-5}$ L/mol/sec., respectively.
- •Ozone reacts exceedingly slowly with urea (the main bather contaminant) and also slowly with another bather contaminant: creatinine. •Decomposing ozone does not appear to affect the rate of reaction.
- •Ozone does not react at all with ammonium ion (the main form of ammonia at pool pH), but does react slowly with the small fraction of ammonia as well as with its chlorinated product: monochloramine.
- •Ozone only partially oxidizes organic matter and reacts primarily with readily oxidzable functionalities such as amine (-NH₂) and sulfhydryl (-SH) groups (present in amino acids and possibly protienaceous matter) and with compounds containing reactive carbon-carbon double bonds (-C=C-).
- •Both chlorine and bromine are better overall oxidants for bather contaminants as shown in the table above.

	4. ULTRAVOILET (UV) OZONE				
Device Description	•A plastic enclosure containing one or more UV lamps, fitted with an air inlet and				
Device Description	outlet.				
Principle of Operation					
	very low ozone conc. (0.03–0.07 vol. %) that is injected into the water via a vacuum				
	venturi in the return line.				
Claimed Ozone Output					
Contact/Reaction Char					
Calc'd. Ozone Absorption Pools: 71–87%; Spas: 83–94%					
Ozone Offgas Destruct	tion •None				
Calc'd. Ozone Conc. in					
Calc'd Steady State Oz	zone Conc. Pools: 0.34–0.78 ppb				
Before Reaction	Spas : 0.35–3.0 ppb				
Calc'd. Time to 99% St					
	Testing of UV Ozonators				
Disinfection	•Spa tests with UV ozone (0.25 g/h) alone showed a very slow disinfection rate (~0.8%/min.) of				
	bather-introduced bacteria as the water was heated from 77 to 95°F over a two-hour period. •Tests				
	at spa temperature (~100°F) showed no killing of bacteria over a 30-min. period (Wojtowicz 1985),				
	●Other tests at 106°F showed similar results (Watt et al 1999).				
	•Conclusion: Ozone concentration too low (as shown above) for significant effect on disinfection.				
Algae Control	•Swimming pool tests with UV ozone (0.5 and 1.0 g/h) resulted in green algae blooms after 3 and				
(Wojtowicz 1985)	4 days despite continuous ozonation.				
Oxidation of	•No oxidation of urea was observed under spa conditions over a 36-hour period at an ozone feed				
Contaminants	rate of 0.3 g/hour (Wojtowicz 1985).				
	•Other tests showed similar results (Adams et al 1999).				
0 " "	•Conclusion: Ozone concentration too low (as shown above) for significant effect on oxidation.				
Generation of	•Spa tests at 25 and 35°C with UV ozone (0.3 g/h) resulted in available bromine generation				
Bromine From Bromide Ion	efficiencies of only 21 and 8%, respectively.				
Diomide ion	Assessment				
Chlorine Concentration	•Manufacturer Recommendation: Typically about 0.5–1.0 ppm				
	•Technical Assessment: The minimal effect of UV ozone on disinfection does not support				
	claims of reduced chlorine maintenance concentrations.				
	•Therefore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and				
	spas (3–5 ppm) would be necessary for adequate disinfection.				
Chlorine Usage	•Claims: up to 50–80% reduction.				
	•Technical Assessment: The minimal effect on disinfection and lack of significant				
	oxidation capacity does not support claims of reduced chlorine usage.				
Operational and Analy	, , , , , , ,				
Deficiencies	Ozone output decreases with age of lamps.				
	No way to tell if lamps need replacement.				
	No method to measure the low ozone concentrations.				
Safety	•The lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due				
	to ozone build up.				
	OSHA permissible exposure limit is 0.1 ppm for an 8-hour exposure.				
NSF Testing	•Only one ozone generator (rated at 1g/h) was tested and requires NSF approved feeders				
-	delivering 2 ppm chlorine or 4 ppm bromine.				
NSF Testing Cost	delivering 2 ppm chlorine or 4 ppm bromine. •UV ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to				
	delivering 2 ppm chlorine or 4 ppm bromine. •UV ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to 50,000 gals. retail for \$500 to \$700.				
-	delivering 2 ppm chlorine or 4 ppm bromine. •UV ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to 50,000 gals. retail for \$500 to \$700. •These units come with venturi-type injectors but do not have air filters, dryers, or ozone				
-	delivering 2 ppm chlorine or 4 ppm bromine. •UV ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to 50,000 gals. retail for \$500 to \$700.				

	5. CORONA DISCHA	ARGE (CD) OZO	NE: DIN 1964	3		
CD Ozone Generation				a discharge) from very dry air. The		
	required ozone concent			a alconarge, nem very ary arm the		
The Ozone-Granular Activa-	Applicability	•Large public po		pather loads.		
ted Carbon (GAC) Process	Treatment			apid sand filtration, full flow		
<u>DIN 1984</u>	Sequence			ne offgas destruction, and		
		chlorination.		ie engae aconaciien, and		
	Ozone Dosage	•0.8–1.0 ppm if :	28°C			
		•1.0–1.2 ppm ab				
	Contact Time			n of microorgan-isms and a		
	(min.)			partial oxidation of bather		
	()	contaminants.		partial exidation of batrier		
	GAC Filtration	Destroys ozone	(to <0.05 ppr	n) and chlorine		
	Chlorine Dosage	•0.5 ppm	(to <u>□</u> 0.00 ppr	ni) una cinomic.		
	Pool Turnover Time	•~2 hours				
	Water Purge		limit minoral a	alt build up		
Disinfection Objectives	Combined Chlorine	•~30L/bather to		•		
Distillection Objectives) - 4 4! - 1 (ODD)	≤0.2 ppm @			
	Oxidation-Reduction F	otentiai (ORP)	750 mv. @ p			
	Effective Vill Time		770 mv @, p			
	Effective Kill Time		~30 seconds			
	Bacterial Colonies		<100 per ml			
Almas Cambrol	E. coli		0 per 100 m			
Algae Control				not used as the primary sanitizer.		
Chemical Oxygen Demand			ollutants ente	ring the pool per bather correspond		
(COD) Reduction Data	to a COD of 4.0 g KMnO ₄ /cu. meter.					
	•The combined flocculation-filtration-chlorination process reduces the COD (excluding					
	urea and ammonia) of the water by the equivalent of 2.0 g KMnO ₄ /cu. meter.					
	•Thus 2 cu. meters of water/bather have to be treated to remove the pollutant load.					
	•In the combined flocculation-filtration-ozonation-GAC filtration-chlori-nation process,					
	the COD reduction is 20% higher, ie, 2.4 g KMnO ₄ /cu. m.					
	•Thus only 1.67 cu. meters/bather have to be treated to remove the pollutant load, resulting					
000 D 1 11 0	in a smaller treatment plant.					
COD Reduction Summary	•Flocculation-filtration-cl					
	Ozonation-GAC filtration					
Effects of GAC Filtration	•GAC destroys ozone and chlorine and can convert ammonia chloramines such as					
	monochloramine to elemental nitrogen.					
	•GAC adsorbs organic matter and microorganisms and may become biologically active,					
	increasing contaminant removal through biodegradation.					
	•The relative effects of ozone and GAC on COD reduction are unknown, but in view of					
			bather contai	mi-nants, COD reduction by GAC		
04600	may in fact exceed that		,	A		
Cost of Ozone Generators		luction Rate (g/h		Approximate		
not including peripheral	Air Feed (1.5 wt. % O ₃)			Cost		
equipment)	10.000	2-		\$4,000-\$11,000 \$10,000-\$25,000		
	12–200	20–3 750–1				
mnost of Equipment Cost	The additional arms to			\$35,000–\$60,000		
mpact of Equipment Cost	•The additional capital requirements for a full ozone–GAC system are high and recovery of capital costs through lower operating expenses can take many years.					
0	•This process is cost eff					
Generation of Bromine				ne for sanitizing whirlpools (ie, spas)		
From Bromide Ion				an efficiency of only 50%. •The		
		er at a typical spa	temperature of	of 40°C due to increased ozone		
	decomposition.					

6.	CORONA DISCHARG	E (CD) O	ZONE: N	MODIFIED DIN DESIGN		
A. Full Flow Ozonation	Applicability		stallation			
Hartwig 1996	Process Sequence	Flocculation (optional), ozonation, mixed media filtration, ozone				
		offgas destruction, and chlorination.				
	Filter Construction			e-resistant sand filters, sized to allow sufficient head		
	T III.CT GOTIOLI GOTION			contacting.		
	Ozone Injection			side stream		
	Recommended			5–1.0 ppm depending on water facility.		
	Ozone Dosage	Valles	110111 0.1	5-1.0 ppm depending on water facility.		
	Contact Time	•No dat	a availah	ole (DIN design requires ≥ 2 min.).		
	Aqueous Ozone			op the sand media destroys the dissolved ozone as		
	Destruction		chlorine.	op the same media accuração the alcocivea ezone ac		
	Chlorine Dosage			uires 0.5 ppm.		
	Turnover Time	•~6 hou		and 0.0 ppm.		
Concerns	Flocculation-filtration			emove 80% of the pollution load.		
				fect contaminant removal and put more emphasis on		
	much more expensive			root demandrative removal and par more emphasis on		
	•The lower turnover r			contaminant removal.		
B. Partial Flow Ozonation	Applicability			ng installations.		
Hartwig (1996)	Process			ream ozonation, contacting/GAC filtration, offgas		
<u> </u>	Sequence			n, and chlorination.		
	% of Full Flow	Typical	Jou double	•10–50%		
	Ozonation		nended	•25–40%		
	Recommended					
	Ozone Dosage	•Varies from 0.15–1.0 ppm depending on water facility.				
		•No data available (DIN design requires ≥ 2 min.).				
	Aqueous Ozone •A combination contact chamber and GAC filter is employed,					
	Destruction	however, some prefabricated systems do not destroy ozone in				
	Chlorine Dosage	solution or in offgases. •DIN 19643 requires 0.5 ppm.				
	Turnover Rate	•~6 hours.				
Concerns	•I ack of flocculation			flow ozonation, and a lower turnover rate than used		
	in DIN 19643.	400 01 011	iy partiai	non ozonaton, and a lower tamover rate than accu		
	Assessm	ent of Pr	ocesses	A and B		
Factors Affecting	Combined Chlorine			ta available.		
Disinfection Rate	ORP		•No dat	ta available.		
	Chemical Oxygen D	emand		ta available.		
Disinfection Objectives	Bacterial Colonies			ta available.		
	E. coli			ta available.		
Algae Control	•Although ozone is to	xic to mai		es of algae, it is not used as the primary sanitizer.		
Oxidation of Contaminants				r increases the non-urea and ammonia COD		
Oxidation of Contaminants				hlorination) and also requires a water purge and an		
				e), any significant departure from DIN 19643 specs.		
	will result in a lower in					
				ation, with only 10% of full flow ozonation, and with a		
	turnover time of 6 hours cannot be expected to even come close to the COD reduction achieved by DIN 19643.					
Cost			entional c	hlorination (see Sheet 5).		
				pe of system employed.		
Cost Effectiveness				on is in water facilities with high bather loads.		
	•The cost effectivene bather contaminants			systems will depend on how well they remove ptable water quality.		
				fications are expected to remove far less COD than		

	7. (COPPE	R, SILVER	AND	ZINC			
Sources			er-silver ioni ric acid and			s, co	pper sulfate, and copper chelates	
	Silver	•Coppe	er-silver ioni	zers a	nd cartridges	s, zin	nc-silver cartridges, colloidal silver,	
							e, and silver nitrate.	
	Zinc							
Disinfection Data For Silver	Silver (ppb)	(ppb) 99.9% Kill Time (mins.) of <i>E. coli*</i> @ 25°C and pH 7.5						
Wuhrman and Zobrist 1958	10 432							
	30 86							
	90 32							
	270					13		
							hloride ion increased kill time by mins. for each 10 ppm hardness.	
Swimming Pool Testing	 Silver was sl 	nown to	be unsatisf	actory	, for swimmir	ng po	ool disinfection. •Bacteria counts	
Shapiro and Hale 1937	were unaffect	ed and	consisted o	f S. aı	ureus, S. albi	us, a	nd streptococci which can cause	
	eye, ear, nose							
Disinfection Data for Copper- Silver Ionizer w/o Chlorine	three success	sive per	iodic tests in	n a 16	,000-gal poo	l (Wo	2,000 cfu/mL) were observed on ojtowicz 1988)	
	30	00-gal.	Spa Test w	ith 4	Bathers at 4	0°C	(104°F) (Sandel 1996)	
					Before Use)	After 15 mins. ^B	
	Standard F				<1/mL		>3,000/mL	
	Total & Fecal Coliform, MPN ^A				0 of 5 positiv		4 of 5 positive	
	Fecal Stretococci, MPN 0 of 5 positive 5 of 5 positive							
	A) Most Probable Number. B) Even after 30 mins. SPC was >3,000 cfu/mL and Fecal Stretococci (MPN) was 5 of 5 positive.							
Disinfection Data For Copper,	Copper (ppn	n) Sil	ver (ppm)	Av.	. CI (ppm)		One-Minute % Kill	
Silver, and Chlorine	0.39		0		0		1	
Kutz, Landeedn, Yahya, and	0		0.06		0		2	
<u>Gerba 1988</u>	0.48		0.04		0		7	
	0		0		0.2		99.9	
	0.47		0.04		0.2		99.99	
	 Tests were done in well water with only 0.02 ppm chloride. Chloride ion is known to reduce the bactericidal effectiveness of silver. 							
Disinfection Data For Zinc							copper or silver.	
Algae Control Data For	-7 tittibactoriai	proper	lics of zine t	110 1110	den less than	1 101 (Copper (ppm)	
Copper	Algae		% Cont	rol	Algistat	ic	Algicidal	
Fitzgerald and Jackson 1979	Chlorella py.		0		0.12–0.1		7 g	
			100		0.21–0.44		>0.6	
	Phormidium i	n.	0		0.14-0.21			
			100		0.59		>0.6	
	Pleurochloris	ру.	100		0.07-0.14		>0.6	
Algae Control Data For Silver Adamson and Sommerfeld 1980	•Silver at 64 pmustard algae	•	s shown to b	e effe	ective against	t blue	e-green but not against green or	
Algae Control Data For Zinc	•Zinc is much		fective than	copp	er by a factor	r of a	bout 10.	
Oxidation of Contaminants	•Copper, silve	er, and	zinc do not	osse	ss oxidative	сара	icity.	
Staining Potential							g a potential for staining.	
	•Copper can							
							of pool surfaces will occur over itate from the water.	
		on, cop					should be used only on an as	
Precipitation Potential		cipitate	as basic zir	nc car	bonate at co	ncen	trations of a few ppm and may	

8. COPPER-SILVER IONIZERS										
Device Description	•An electro	lytic cell consisting	of a pair of copper-silv	ver electrodes, a DC power supply, and						
-	control pan									
	•Device is	installed in water retu	urn line to pool or spa.							
Principle of Operation	•As water f	lows through the cell	I, a DC current genera	tes soluble copper and silver ions.						
Recommended Ion	Copper	0.2–0.4 ppm	•	•						
Concentrations	Silver	~20–40 ppb (a	ssuming 90/10 copper	-silver electrodes).						
Recommended Av. CI		0 to ~0.2 ppm.								
Miantenance of Chlorine	•The extre	•The extremely low recommended av. CI will be very difficult to measure because it is at the								
Concentration	bottom of t	ne scale.								
	•It will also be difficult to maintain under the twin demands of UV decomposition ar									
		nt oxidation.								
Chlorine Usage	•The main thermal/UV	chlorine demand in decomposition and	n outdoor swimming p contaminant oxidation	pools is due to the combined effect of .						
				Inlight exceeds that due to oxidation of er loads, the reverse may be true.						
	chlorine wi		o satisfy this demand	duce this demand and the low level of , consequently, significant reduction in						
Disinfection				sinfection in the absence of chlorine.						
	•Since copper and silver contribute minimally to the disinfection rate in the presence of av. CI, the extremely low recommended av. CI level of 0.2 ppm would be insufficient for adequate disinfection in stabilized pools.									
				rine levels (ie, 1–3 ppm in pools and 3– nfection (and contaminant oxidation).						
Algae Control	•At recomm	nended concentration	ns, copper acts algista	tically.						
	•Copper is	most effective again	st mustard algae and l	east effective against black algae.						
Oxidation of Contaminants	•Copper ar	nd silver do not contr	ibute to oxidation of sv	vimming pool water contaminants.						
				ppm will not be sufficient to adequately						
		her contaminants.		, ,						
Staining/Discoloration	•Silver tend	ds to adsorb onto sur	rfaces creating a poter	ntial for staining.						
	•Copper ca	n cause visible local	lized staining above 0.	2–0.3 ppm.						
	•Even belo	w this concentration	, a general discolorati	on of pool surfaces will occur over time						
	since all ac	ded copper and silve	er eventually precipitat	e from the water.						
			silver containing algi	cides should be used only on an as						
	needed ba									
Electrode Maintenance			es necessitates period	ic cleaning with acid.						
NSF Approval		ave not been approv								
Cost	•lonizers a		ven their minimal effec							
		Gallons	lonizer	Replacement Electrodes						
	Pool	10,000–25,000	\$1,000–\$1,500	\$100–\$150						
	Spa	200-1,000	\$400-\$900	\$100–\$150						

		9. C	OPPE	R-SILVER CARTRIDO	GES			
Device Description	a carrie materia	r (ie, gran I (ie, activ	ular alu ⁄ated ca	umina coated with ~1% arbon).	% metallic silver), c	nister or cartridge containing copper metal, and a filler . •In addition, copper is		
				e form instead of copp		. •III addition, copper is		
				serted into a plastic honstallation after sand of		an inlet and outlet and a valve		
	•Small	cartridges	are als	o available and are in	stalled inside cart	ridge filters on pools or spas.		
Principle of Operation		of water (~: es the met			unit quickly dissol	ves the copper and very slowly		
Technical Assessment	rate. ∙Ir spas), v •Silver	•The cartridge only works when the pump is on and adds very little to the overall disinfection rate. •Indeed, in one minute the cartridge treats less than 0.3% of the pool water (<3% in spas), whereas chlorine in the water treats 100%. •Silver containing ceramic cartridges (so-called candles) have been known since the 1930's. •Their bactericidal effectiveness gradually decreased due to build up of organic slimes,						
			iodic cle	eaning (White 1972).				
Aqueous Copper Conc.		0.06 ppm						
Aqueous Silver Conc. Recommended Sanitizers		0.06 ppm	with 50	ppm cyanuric acid an	d maintain 0.4.06	S nnm av. Cl		
Recommended Samuzers	Spas:	Stabilize v	WILLI JU	Potassium Monope		Av. CI		
		izer Optio	ns	Ppm		as Dichlor		
	Each Use Dosage			9.3 (equivalent to 4		~4 ppm		
	Weekly Dosage ~28 (equivalent to ~13 ppm av. Cl) ~12 ppm							
Maintenance of Available						measure because it is near		
Chlorine				 It will also be difficultion on and contaminant of 		r the twin demands of		
Disinfection Data: Pools			_			nd silver (0.03 ppm) provided		
<u>Sandel 1992</u>	by a ca		d little e			chlorine sanitized and		
Disinfection Data: Spas Gerba & Naranjo 1999	days pr	ior to intro	duction	n of bacteria.		had been in operation for 3		
Di-i-f4i 0				no effect on the disinfe				
Disinfection Concerns	Pools	recomm	ended (disinfection, consequently, the red too low for effective		
	Spas				PMPS is not as th	ermally stable as chlorine.		
Algae Control	•The co		ons of c	chlorine and copper ar	nd silver are consid	dered too low for effective		
Contaminant Oxidation		•The rec		nded chlorine level of the contaminants.	0.4–0.6 ppm is co	nsidered too low for effective		
	Spas	•PMPS of Sheet No	decom _l o. 11).			omposed in 8 hours (see		
Chlorine Usage	Claime				oxidative capacit	у.		
omormo ocugo	Claimed •60–80% reduction. Assessment •Since tests show that the cartridge does not enhance disinfection, the cartridge is unlikely to deliver on the claim of up to 80% reduction in chlorine usage and allow effective disinfection, algae control, and contaminant oxidation.							
NSF Approval	•Coppe			s have not been appro				
Cost		Volu Gallo	ons	Flow Controller Plus Cartridge	Replacement Cartridge	Cartridge Lifetime		
	Pool	10,000-		\$149-199	\$69-99	6 months		
	Spa	250–1	,000	-	\$30	4-months		

			10. ZI	NC-SILVER CARTRIDGES				
System Description	Pools	and a removable cartridge that contains zinc, silver and limestone.						
		•An inse		ntaining Trichlor tablets is available as well as a flow controller for non- ation.				
	Spas	•A cartr	idge c	ontaining the mineral reservoir is designed to fit inside the cartridge filter.				
Principle of Operation		of water through the cartridge can slowly dissolve zinc and silver.						
		organisms such as bacteria may become attached to the surface of the minerals within tridge and undergo inactivation.						
Technical Assessment		cartridge works only when the pump is on and adds very little to overall disinfection rate.						
				the cartridge treats less than 0.3% (<3% in spas) of the pool water, water treats 100%.				
				cartridges, build-up of organic slimes may affect the performance.				
Aqueous Zinc Conc.		a availab		salara goo, balla ap el el gallio ellinos may alloctallo periolinales.				
Aqueous Silver Conc.	_	ta availab						
Sanitizer Options	Pools	•Mainta	in 0.5-	-1.0 ppm av. Cl.				
		•Shock once a week with 1 lb. calcium hypochlorite or 1 lb. potassium monopersulfate (PMPS) per 10,000 gals.						
		•For no	n-chlo	rine operation shock 2–3 times a week with PMPS.				
	Spas			-1.0 ppm chlorine or bromine.				
		Shock once a week with Dichlor or PMPS according to manufacturers recommendations.						
Maintenance of	• It will	be difficul	t to ma	aintain 0.5–1.0 ppm av. Cl under the twin demands of thermal/UV				
Available Chlorine				staminant oxidation.				
Disinfection Concerns	Pools	•The low recommended chlorine residual of 0.5–1.0 ppm is considered too low for adequate disinfection in stabilized pools.						
	 The non-chlorine option is not expected to provide adequate disinfection or algorithms. 							
		•Based on their poor bactericidal properties, silver and zinc ions are not expected to significantly increase the disinfection rate.						
		•In the a	absend	ce of chlorine, the cartridge itself provides a very slow bacterial kill rate.				
	Spas	•The recommended chlorine (and bromine) levels will be insufficient to mee demands of the higher bather density in spas (<u>Brigano and Carney 1984)</u> .						
		•Shocking once a week is considered insufficient to oxidize bather contaminants.						
	Bromine will reduce the effectiveness of silver due to insolubility of silver be							
Algae control		•Because the concentration of zinc and silver in the pool water are not available, their effect on						
0 11 (1)				e assessed.				
Oxidation of		•The low recommended chlorine level of 0.5–1.0 ppm is considered too low for adequate						
Contaminants	 contaminant oxidation. Shocking of the pool with PMPS is much less effective than with chlorine, eg, 1 lb of PMPS equivalent to only 1/3 of a 1-lb shock dose of chlorine. 							
Chlorine Usage	Claims •50–67% reduction.							
~g-			•The	The cartridge is unlikely to deliver on the claim of reduced chlorine usage and				
				effective disinfection, algae control, and contaminant oxidation.				
Cost)-gal. Poc	ol	Flow Controller \$100; 6-month Cartridge ~\$90				
	40,000-gal. Pool			Flow Controller ~\$330; 6-month Cartridge ~\$150				
	250–1,000-gal Spa			6-Month Cartridge				

	11. POTAS	SIUM MONO	PERSU	LFA	ATE (PMPS)		
Formula	•2KHSO ₅ •KHSO ₄ •	•2KHSO ₅ •KHSO ₄ •K ₂ SO ₄					
Assay	•85%						
Active Oxygen	•~4.5%						
Form	White granular powder						
Uses	Non-chlorine Shock in Pools •Dosage: 1lb/10,000 gals.						
	Sanitizer/Oxidizer	Sanitizer/Oxidizer in Spas •Used			ne or in combin	ation with chlorine or silver.	
Stability in Water					Decomposit	ion Rate (% per hour)	
Wojtowicz 2000	Sunlight				-	~23	
	Room Temperatur	Room Temperature (~70°F)				~4	
	Spa Temperature	Spa Temperature (~104°F)				~20	
Disinfection in Pools						table as a swimming pool	
Gerba & Naranjo 1999	disinfectant with ina	activations of	only ~17				
Disinfection in Spas				% I	Inactivation @	. ,	
Gerba & Naranjo 1999	Time (mins.)	S. faecalis			E. hirae	P. aerugenosa	
	2	58			28	15	
	15	>99.999			>99.9999		
	•Data for <i>E. coli</i> show >99.9999% inactivation in 2 mins.						
	•Data for chlorine (3 ppm) show higher 2 min. inactivations of 99.99% for						
Alexa Control		S. faecalis and 99.97 for P. aerorugenosa.					
Algae Control Oxidation of		No data are available on the effect of PMPS on swimming pool algae.					
Contaminants	Ammonium ion •No reaction.						
Containmants	Ammonia				No data available.		
	Monochloramine Urea				Nitrate ion is main oxidation product.		
					No data available. No data available.		
	Amino Acids, Creatinine, Uric Acid, etc. Other Organic Matter						
Diagdyoutous	_			data available.			
Disadvantages and Deficiencies	•Oxidizes nitrogen compounds to nitrate ion, which is a nutrient for bacteria and algae.						
Deliciencies	Not stable in water subjected to heat or exposed to sunlight. Deduces all leads all stable in the formation of biastics.						
	•Reduces pH and alkalinity due to formation of bisulfate ion.						
	$2KHSO_5 \bullet KHSO_4 \bullet K_2SO_4 \rightarrow 3KHSO_4 + K_2SO_4 + 2O$						
	$3HSO_4^- + 3HCO_3^- \rightarrow 3SO_4^{2-} + 3CO_2 + 3H_2O$						
	•The recommended 1-lb. shock dose is equivalent to only 1/3 of a 1-lb. chlorine shock.						
■Very expensive: \$55 per 25 lbs. or \$11.22/lb. equivalent av. Cl.					V. Cl.		

	12. POTASSIUM PE	ROXYDISULFA	TE (F	PPS, PERSU	JLFATE)			
Formula	•K ₂ S ₂ O ₈							
Assay	•>95%							
Form	White granular powder							
Stability in Water	Decomposition Rate (%/day)							
	Sunlight				~5			
	Swimming Pool Te		Very slow					
	Spa Temperature	ry slow.						
Uses	•Blended with Dichlor for use in shock treatment.							
	 As non-chlorine ox 		sually	in combinati	on with copp	per.		
Effect on Disinfection	No data are availal							
						as negligible anti-bacterial		
	properties even in the presence of copper or silver ions.							
Effect on Algae Control	No data is available							
	Best guess is that							
Oxidation of Contaminants	•PPS is normally a sluggish oxidant compared to potassium monopersulfate and requires							
	activation as discussed below.							
	Effect of Sunlight dissociates persulfate into reactive sulfate ion radicals:							
	$S_2O_8^{2-}$ + UV \rightarrow 2SO ₄ -							
				als are effective in oxidation of organic matter				
	(Minisci et al 1983).							
	•Silver (and possibly copper) ions can catalyze oxidation reactions of							
	and Copper lons persulfate via formation of divalent silver (or trivalent copper) (N							
	et al 1983). •The effectiveness at swimming pool concentrations has not been documented.							
Deficiencies	- Normally reacts als		• •	aminanta				
Delicielicies	Normally reacts slowly with bather contaminants.							
	•Reduces pH and alkalinity due to formation of bisulfate ion on decomposition: $S_2O_8^{2-} + H_2O \rightarrow 2HSO_4^- + O$							
	$2HSO_4^- + 2HCO_3^- \rightarrow 2SO_4^{2-} + 2CO_2 + 2H_2O$							
Formulated Product	Product	Cost						
Formulated Froduct	Floudet	Application		Dosages Copper PPS		Cost		
			· '	ppm	ppm			
	PPS with 1.6%	Pools and		0.2–0.8	1.5 ppm	\$66/10 lb.		
	copper sulfate	Spas (0.2–0.4 ideal)				φοση το το:		
	Concerns							
	Questionable disinfection and oxidation.							
	Product is expensive.							
	1	- TOGGOT IS OX	751151					

	13. POLYHEXAMETHYLEN	E BIGUANI	DE (PHMB)			
System Components ^A	Component	Function					
	20 % PHMB			Bacteriostat			
	Quat ^B	Algistat					
	30% Hydrogen Peroxide	Oxidant					
	Enzyme Cleaner	Filter Cleaner					
	Chelating Agent	Trace Metal Chelation					
	Co		ing Pool trations	Testing and Adjustment			
	PHMB	6–10 ppm active		Weekly			
	Quat		m active	Weekly			
	Hydrogen Peroxide	0–27 ppm		Every 3–4 weeks			
Disinfection Data	Organism			MIC ^C (PHMB)			
Block 1991	E. coli			4 ppm			
	S. aureus			4 ppm			
	P. aerugenosa		20 ppm				
Swimming Pool Disinfection				amples showed bacterial counts >200			
Testing of PHMB System	cfu per mL vs. 4% for a chlor						
<u>Sandel 1996</u>	•In a second year test (100-days), 57% of the of water samples showed bacterial counts						
	>200 cfu per mL vs. 0% for a chlorine control pool.						
	•The incubation periods for the two tests were 7 and 2 days, respectively, indicating						
	development of PHMB-resistant bacteria.						
	•Formation of bacterial slimes was also observed during the tests.						
Algae Control Data		MIC (ppm)					
del Corral & Johnson 1996	Algae		Quat	PHMB			
	Chlorella pyrennoidosa (Gree		1.0	≤0.5			
	Phormidium faveolarum (Black)		5.0	<0.5			
	Eustigmatos vischeri (Yellow	,	≥1 <5	> 20			
Oxidation of Contaminants	Hydrogen peroxide is a poor oxidant for ammonia, urea, and other organic matter.						
Incompatibilities ^A	Chlorine and bromine oxidiz						
	Ozone and persulfate oxidizers.						
	Copper and silver-based algicides.						
	 Most clarifiers and cleaners. 	Most clarifiers and cleaners.					
	Some stain and scale inhibitors.						
Potential Problems	•Excessive use of PHMB, Quat, and Enzyme can cause foaming and impart odor and						
	off-taste to the water.						
	Build-up of organic matter.						
	Development of persistent haziness and cloudiness.						
	•Development of biological growths, eg, pink slime and water mold.						
	Development of PHMB resistant bacteria (Sandel 1996).						
Cost	 More expensive than chloring 	ne.					

- A) Product literature.
- B) Alkyldimethylbenzyl ammonium chloride.
- C) Minimum inhibitory concentration.

Af flow through cell containing a UV lamp (emitting ~254 nm radiation). **Ptydrogen peroxide.		ULTRAVIOLET (U	IV) LIG	HT AND HY	DROGEN PEROX	IDE			
Principle of Operation Principle (Principle of Operation Principle (Principle of Operation Principle (Principle	System	•A flow through cell containing a UV lamp (emitting ~254 nm radiation).							
Principle of Operation	-					,			
UV light (ie. UV photons) dissociates hydrogen peroxide (H ₂ O ₂) into reactive hydroxyl radicals (HO) that are the actual oxidizing agent: H ₂ O ₂ + UV → 2HO *The UV light liself also can inactivate microorganisms such as bacteria. Application	Principle of Operation			~40 nnm hyd	rogen peroxide flo	ws through the cell			
radicals (HO) that are the actual oxidizing agent: HyO₂ + UV → 2HO *The UV light itself also can inactivate microorganisms such as bacteria. **Small spas** **Hort spas** *	· ·····o.pie er eperadon								
Hy-O2 + UV - 2HO						kide (11202) iiito reactive riydroxyi			
#The UV light itself also can inactivate microorganisms such as bacteria. *Small spas. *Although UV light can inactivate 99.9% of <i>E coli</i> in 1 min. (White 1972), the residence time of the water in the UV cell is much less than 1 min. *For example, assuming 1 gal. volume for the UV cell attached to a 300-gal. spa with a water flow rate of 10 gal./min. the residence time of the water in the cell is only 0.1 min. *UV light intensity decreases with time. *Hydrogen Peroxide* #Hydroxyl Radicals* *No sanitizer residual in the water outside the cell. *The kill time of microorganisms such as bacteria is very poor disinfectant. *500 ppm inactivates 99% of <i>E. coli</i> in 10-30 mins. *The kill time of microorganisms such as bacteria is very long because only about 1/30 of the spa water flow strough the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. *Bacteria can repair damage from UV light. *Conditions* *Onditions* *Onditions* *Onditions* *Onditions* *Onditions* *Onditions* *Onditions* *Onditions* *No Size provided of the cell. *Torogen 2 2 0 0 2° *Creatinine 1.5 1 5 7 Glycine 65 0 70 *Alamine 59 0 46 *Alamine 59 0 46 *Creatinine 63 2 2 59 *Lysine 35 0 67 *Alamine 46 *Alusine 63 2 2 59 *Al Lysine 63 0 69 *Al Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. *B) Total organic carbon. C) Calculated. *Spa Test *Asymmoval 60 NN SF approval (IVSF 1985). *Ost *Asymmoval 60 NN SF approval (IVSF 1985).		` '		e actual oxid	izing agent.				
Application Rate ### Application ### Applica				aan inaatiyat	a miaraaraaniama	auch as hastaria			
Factors Affecting Disinfection Rate	Amuliantiam								
Rate 1972 , the residence time of the water in the UV cell is much less than 1 min. •For example, assuming 1 gal. volume for the UV cell attached to a 300-gal. spa with a water flow rate of 10 gal./min. the residence time of the water in the cell is only 0.1 min. - UV light intensity decreases with time Water turbidity and build up of films on the lamp reduces UV light intensity. Hydrogen Peroxide •Hydrogen peroxide is a very poor disinfectant. •500 ppm inactivates 99% of £. coli in 10-30 mins. Hydroxyl Radicals •No data available.									
than 1 min. ◆For example, assuming 1 gal. volume for the UV cell attached to a 300-gal. spa with a water flow rate of 10 gal./min. the residence time of the water in the cell is only 0.1 min. ♣UV light intensity decreases with time. ♣Water turbidity and build up of films on the lamp reduces UV light intensity. #Hydroxyl Radicals		<u> </u>							
cell attached to a 300-gal. spa with a water flow rate of 10 gal./min. the residence time of the water in the cell is only 0.1 min. *UV light intensity decreases with time. *Water turbidity and build up of films on the lamp reduces UV light intensity. *Hydrogen peroxide is a very poor disinfectant. *500 ppm inactivates 99% of <i>E. coli</i> in 10-30 mins. *Hydroxyl Radicals** *No data available. ** *No sanitizer residual in the water outside the cell. *The kill time of microorganisms such as bacteria is very long because only about 1/30 of the spa water flows through the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. **Bacteria can repair damage from UV light. ** *Contaminant Oxidation Data Woltowicz 2000 ** Hydrogen peroxide: 50 ppm ** Nitrogen: 2.26 ppm per compound ** Alkalinity: 80 ppm ** Calcium hardness: 250 ppm ** Oxidation by the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. ** Ammonia ** Oxidation by the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. ** Conditions ** Hydrogen peroxide: 50 ppm ** Oxidation by pm ** Oxidation	Rate								
gal./min. the residence time of the water in the cell is only 0.1 min. UV light intensity decreases with time. Water turbidity and build up of films on the lamp reduces UV light intensity. Hydrogen Peroxide									
Min.									
Hydrogen Peroxide Hyd				•	e residence time o	the water in the cell is only 0.1			
Hydrogen Peroxide Hydrogen Hydrogen peroxide Hydrogen									
Hydrogen Peroxide Hydrogen peroxide is a very poor disinfectant. ●500 ppm inactivates 99% of <i>E. coli</i> in 10-30 mins.									
Hydrogen Peroxide					•	of films on the lamp reduces UV			
Inactivates 99% of E. colf in 10-30 mins.									
Pydroxyl Radicals No data available.		Hydrogen Peroxi	ide	•Hydrogen	peroxide is a ve	ery poor disinfectant. •500 ppm			
No sanitizer residual in the water outside the cell. The kill time of microorganisms such as bacteria is very long because only about 1/30 of the spa water flows through the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. Bacteria can repair damage from UV light. Contaminant Oxidation Data Wojtowicz 2000		<u> </u>	-			-30 mins.			
The kill time of microorganisms such as bacteria is very long because only about 1/30 of the spa water flows through the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. **Bacteria can repair damage from UV light. **Contaminant Oxidation Data Woltowicz 2000* **Conditions** **Conditions** **Hydrogen peroxide: 50 ppm									
the spa water flows through the cell per minute and the residence time of the spa water in the UV cell is much less than 1 minute. - Bacteria can repair damage from UV light. Contaminant Oxidation Data Wojtowicz 2000 Conditions Wojtowicz 2000 Conditions - Hydrogen peroxide: 50 ppm - Nitrogen: 2.26 ppm per compound - Alkalinity. 80 ppm - Calcium hardness: 250 ppm - PH 7.4 - T =-23°C UV light irradiation time: 4 hours Compound - W Yield of Myield of Myie	Disinfection Concerns								
the UV cell is much less than 1 minute. -Bacteria can repair damage from UV light. Conditions Wojtowicz 2000 - Nitrogen: 2.26 ppm per compound - Alkalinity: 80 ppm - Calcium hardness: 250 ppm - Ph 7.4 - T = -23°C UV light irradiation time: 4 hours - Urea - 2 - 0 - Urea - 2 - 0 - 2° - Creatinine - 1.5 - 1 - 57 - Glycine - 65 - 0 - 70 - α-Alanine - 59 - 0 - 46 - Valine - 63 - 2 - 59 - Lysine - 35 - 0 - 47 - Glutamic Acid - 58 - 0 - 69 - A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals B) Total organic carbon. C) Calculated. Spa Test - NSF Approval - NSF Approval (NSF 1985) System for a small spa will probably cost several hundred dollars.									
## Spaceria can repair damage from UV light. Conditions Hydrogen peroxide: 50 ppm						residence time of the spa water in			
Conditions Hydrogen peroxide: 50 ppm									
Nitrogen: 2.26 ppm per compound									
•Alkalinity: 80 ppm •Calcium hardness: 250 ppm •pH 7.4 •T = ~23°C. •UV light irradiation time: 4 hours Compound % Yield of Ammonia Nitrate ^A Ammonia - 0 Urea 2 0 0 2 ^C Creatinine 1.5 1 57 Glycine 65 0 70 α-Alanine 59 0 46 Valine 63 2 59 Lysine 35 0 47 Glutamic Acid 58 0 69 A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •NO NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Conditions							
•Calcium hardness: 250 ppm •pH 7.4 •1 = −23°C. •UV light irradiation time: 4 hours Compound % Yield of NitrateA Ammonia − 0 − − Urea 2 0 0 2° Creatinine 1.5 1 57 Glycine 65 0 70 α-Alanine 59 0 46 Valine 63 2 59 Lysine 35 0 47 Glutamic Acid 58 0 69 A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •A system for a small spa will probably cost several hundred dollars.	Wojtowicz 2000								
PH 7.4									
T = −23°C. •UV light irradiation time: 4 hours Compound Nitrate Ammonia Ammonia - 0 - Urea 2 0 Creatinine 1.5 1 57 Glycine 65 0 70 α-Alanine 59 0 46 Valine 63 2 59 Lysine 35 0 47 Glutamic Acid 58 0 A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.					s: 250 ppm				
Output Compound Wight irradiation time: 4 hours Compound Wight irradiation time: 4 hours									
Compound % Yield of Ammonia % Yield of Nitrate A % TOC ^B Reduction									
Ammonia Nitrate ^A									
Ammonia-0-Urea202°Creatinine1.5157Glycine65070α-Alanine59046Valine63259Lysine35047Glutamic Acid58069A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated.Spa Test•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.NSF Approval•No NSF approval (NSF 1985).Cost•A system for a small spa will probably cost several hundred dollars.									
Urea202°Creatinine1.5157Glycine65070α-Alanine59046Valine63259Lysine35047Glutamic Acid58069A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated.Spa Test•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.NSF Approval•No NSF approval (NSF 1985).Cost•A system for a small spa will probably cost several hundred dollars.		Compound	%	Yield of	% Yield of	% TOC ^B Reduction			
Creatinine1.5157Glycine65070α-Alanine59046Valine63259Lysine35047Glutamic Acid58069A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated.Spa Test•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.NSF Approval•No NSF approval (NSF 1985).Cost•A system for a small spa will probably cost several hundred dollars.		-	%	Yield of	% Yield of	% TOC ^B Reduction			
Glycine65070α-Alanine59046Valine63259Lysine35047Glutamic Acid58069A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated.Spa Test•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.NSF Approval•No NSF approval (NSF 1985).Cost•A system for a small spa will probably cost several hundred dollars.		Ammonia	%	Yield of nmonia	% Yield of Nitrate ^A 0	-			
α-Alanine59046Valine63259Lysine35047Glutamic Acid58069A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated.Spa Test•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.NSF Approval•No NSF approval (NSF 1985).Cost•A system for a small spa will probably cost several hundred dollars.		Ammonia Urea	%	Yield of mmonia - 2	% Yield of Nitrate ^A 0 0	- 2 ^c			
Valine 63 2 59 Lysine 35 0 47 Glutamic Acid 58 0 69 A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine	%	Yield of nmonia - 2 1.5	% Yield of Nitrate ^A 0 0 1	- 2 ^c 57			
Lysine 35 0 47 Glutamic Acid 58 0 69 A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine	%	Yield of mmonia - 2 1.5 65	% Yield of Nitrate ^A 0 0 1	- 2 ^C 57 70			
A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine	%	Yield of mmonia - 2 1.5 65 59	% Yield of Nitrate ^A 0 0 1	- 2 ^C 57 70 46			
A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine	%	Yield of mmonia - 2 1.5 65 59 63	% Yield of Nitrate ^A 0 0 1 0 0 2	- 2 ^C 57 70 46 59			
exceedingly slowly oxidized even by reactive HO radicals. B) Total organic carbon. C) Calculated. •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine	%	Yield of mmonia - 2 1.5 65 59 63 35	% Yield of Nitrate ^A 0 0 1 0 0 2	- 2 ^c 57 70 46 59			
B) Total organic carbon. C) Calculated. Spa Test •A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid	% Ar	Yield of mmonia - 2 1.5 65 59 63 35 58	% Yield of Nitrate ^A 0 0 1 0 2 0 0	- 2 ^c 57 70 46 59 47			
Spa Test ●A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a 250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval ●No NSF approval (NSF 1985). Cost ●A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate	Ar	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicat	% Yield of Nitrate ^A 0 0 1 0 0 2 0 0 es that ammonia	- 2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is			
250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation. NSF Approval NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly	Ar Ar e form y oxidi:	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicat zed even by	% Yield of Nitrate ^A 0 0 1 0 2 0 0 es that ammonia reactive HO radica	- 2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is			
showed no oxidation of urea after 107 hours of operation. NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic co	Ar Ar e form y oxidi: arbon.	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicat zed even by C) Calculat	% Yield of Nitrate ^A 0 0 1 0 2 0 0 es that ammonia reactive HO radica ed.	2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is ls.			
NSF Approval •No NSF approval (NSF 1985). Cost •A system for a small spa will probably cost several hundred dollars.	Spa Test	Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic cook	e formy oxidi: arbon.	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicative even by C) Calculation continuated by the system (1)	% Yield of Nitrate ^A 0 0 1 0 2 0 es that ammonia reactive HO radica ed. 5 gal/min.) was ev.	2° 57 70 46 59 47 69 per se or byproduct ammonia is is.			
Cost •A system for a small spa will probably cost several hundred dollars.	Spa Test	Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic c • A UV-hydrogen p 250 gal spa at 10	e form y oxidi: arbon. peroxid:	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicative even by C) Calculated experience system (1 sing a 4-6 horizontal experience system (1 sing a 4-6 horizontal experience)	% Yield of Nitrate ^A 0 0 1 0 2 0 es that ammonia reactive HO radica ed. 5 gal/min.) was every duty cycle and a	2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is is.			
- j		Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic c • A UV-hydrogen p 250 gal spa at 10 showed no oxidati	e form y oxidiarbon. peroxidio°F usion of usion	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicated even by C) Calculated esystem (1 sing a 4-6 hourea after 10	% Yield of Nitrate ^A 0 0 1 0 2 0 es that ammonia reactive HO radica ed. 5 gal/min.) was every duty cycle and a	2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is is.			
Overall Assessment •The system cannot provide adequate disinfection and contaminant oxidation.	NSF Approval	Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic c • A UV-hydrogen p 250 gal spa at 10 showed no oxidati • No NSF approva	e form y oxidizarbon. peroxicion of usion of usi	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicat zed even by C) Calculat de system (1 sing a 4-6 hourea after 10 1985).	% Yield of Nitrate ^A 0 0 0 1 0 2 0 es that ammonia reactive HO radica ed. 5 gal/min.) was evour duty cycle and a hours of operation	2 ^c 57 70 46 59 47 69 per se or byproduct ammonia is ls. aluated over a 3-week period in a a synthetic bather insult. Analysis n.			
, , ,	NSF Approval Cost	Ammonia Urea Creatinine Glycine α-Alanine Valine Lysine Glutamic Acid A) Lack of nitrate exceedingly slowly B) Total organic c • A UV-hydrogen p 250 gal spa at 10 showed no oxidati •No NSF approva	e form y oxidizarbon. peroxicion of usion of usion of usion of usion of all (NSF mall sp	Yield of mmonia - 2 1.5 65 59 63 35 58 ation indicat zed even by C) Calculat de system (1 sing a 4-6 hourea after 10 1985). a will probab	% Yield of Nitrate ^A 0 0 0 1 0 2 0 es that ammonia reactive HO radica ed. 5 gal/min.) was evour duty cycle and a 7 hours of operation	2° 57 70 46 59 47 69 per se or byproduct ammonia is ls. aluated over a 3-week period in a a synthetic bather insult. Analysis n. dred dollars.			

15. REACTION OF ANCILLAI	RY CHEMICA	ALS WITH CH	ILORINE (CI) AND BROMINE (Br) ^A
	Reacts with CI or Br ^B	Forms Combined CI or Br ^C	Other Potential Problems
[Algicides]			
Alkyldimethylbenzylammonium chloride	Yes	Yes	Excessive concentrations can cause foaming.
Dialkylmethylbenzylammonium chloride	Yes	Yes	Can precipitate by formation of flocs that can
Alkyldimethyldichlorobenzylammonium	Yes	Yes	cause filter problems.
chloride			Can form bromamines and chloramines.
Poly[oxyethylene(dimethylimino)ethylene- (dimethylimino)ethylene dichloride]	Yes	Yes	Can form bromamines and chloramines.
Copper Citrate or Gluconate	Yes		Excessive concentrations can cause staining.
Copper Triethanolamine	Yes	Yes	Excessive concentrations can cause staining. Can form bromamines and chloramines.
Silver Compounds (eg, silver oxide)			•Excessive concentrations can cause staining.
[Antiscalants and Stain Preventers]			
Organophosphonates (eg, hydroxyethyl-	Yes		Decomposition by sunlight and chlorine produces
idene diphosphonic acid)			phosphate ions.
			 Increases concentration of phosphate, which is a nutrient for bacteria and algae and can cause cloudy water due to precipitation of calcium phosphate.
Polymeric (eg, polyacrylates)	Yes		
[Clarifiers/Flocculating Agents]			
Inorganic (eg, aluminum sulfate)			
Polymeric (eg, polydimethyldiallylammo- nium chloride)	Yes	Yes	
[Defoamers]			
Polydimethylsiloxane	Yes		
1 Olyumethyishoxane	163		
[Degreasers]			
Enzymes	Yes		
[Tints]			
Organic Dyes	Yes		
[Fragrances]			
Organic compounds such as alcohols,	Yes		•Since they apparently can cause foaming, they
aldehydes, ketones, and esters formulated with other reactive organic			are formulated with a defoamer such as
ingredients such as propylene glycol and glycerine.			polydimethylsiloxane.

- A) Ancillary chemicals can also react with non-chlorine oxidizing agents such as potassium monopersulfate.
- B) The rate of reaction will depend on the concentration and functionality of the organic matter as well as the chlorine (or bromine) concentration, temperature, and sunlight duration and intensity.
- C) The greater the nitrogen content, the greater the potential for formation of combined chlorine or bromine.

References

- Adams, V.D., et al, "An Evaluation of an Electrolytic Process for the Removal of Ammonia and Urea from Simulated Spa Water", Symposium Series Vol. IV, pp 44-52, 1999, NSPI National Meeting, Las Vegas, NV,
- Adamson, R.P. and M.R. Sommerfeld, "Laboratory Comparison of the Effectiveness of Several Algicides on Isolated Swimming Pool Algae", *Applied and Environmental Microbiology*, 39(2)(1980):348-353.
- ANSI/NSPI-4 199X Standard for Aboveground/ Onground Residential Swimming Pools.
- ANSI/NSPI-5 1995 Standard for Inground Residential Swimming Pools
- AOAC, Official Methods of Analysis of the American Association of Official Analytical Chemists, 15th Edition, 1990, Arlington, VA.
- Bauer, C. R. and V. L. Snoeyink, "Reactions of Chloramines with Active Carbon", *Journal of* the Water Pollution Control Federation, 45(11)(1973):2290-2301.
- Block, S. S., "Disinfection, Sterilization, and Preservation", Lea & Febiger, Philadeliphia, PA, Fourth edition, 1991.
- Brigano, F.A. and J. F. Carney, paper presented at the 84th meeting of the American Society of Microbiology, St. Louis, MO, March 4-9, 1984.
- del Corral, F. and B. Johnson, "Comparitive Algicidal, Algistatic, and Bacteriostatic Evaluations of Selected Commercial Algicides", Symposium Series Vol. I, pp 18-25, 1996, NSPI National Meeting, Phoenix, AZ,
- DIN 19643 (German Industry Standard: In English): Treatment and Disinfection of Swimming Pool and Bathing Water (Berlin, Beuth Verlag, 1984).
- Dohan, J.M. and W.J. Masschelein, *Ozone Science* and Engineering 9(1987): 315-.
- Dorfman, L.M. and G.E. Adams, "Reactivity of the Hydroxyl Radical in Aqueous Solution", National Bureau of Standards, NSRDS-NBS 46 (Washington, DC, US Government Printing Office, 1972).
- Dumas, Bob "Bromine Stabilizer Passes Early Test", *Pool & Spa News*, January 13, 1999, pp

- Eichelsdorfer, D., "Use of Ozone for Treatment of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, pp. 82 and 91.
- Eichelsdorfer, D. and J. Jandik, "Long Contact Time Ozonation for Swimming Pool Water Treatment", Ozone Science and Engineering 7(2)(1985):93-106.
- Elliasson, B. and U. Kogelschatz, "Ozone Generation with Narrow-Band UV Radiation", Ozone Science and Engineering 13(3)(1991):365-373.
- Fitzgerald, G. P., "Loss of Algicidal Chemicals from Swimming Pools", *Applied Microbiology* 8 (1960): 269-274.
- Fitzgerald, G. P., and M. E. DerVartanian. "Factors Influencing the Effectiveness of Swimming Pool Bactericides." *Applied Microbiology* 15 (1967): 504-509.
- Fitzgerald, G. P., "Compatibility of Swimming Pool Algicides and Bactericides", Water and Sewage Works, 115 (1968): 65-71.
- Fitzgerald, G. P. and D. F. Jackson, "Comparative Algicidal Evaluation Using Laboratory and Field Algae", *Journal of Aquatic and Plant Management* 17 (1979): 66-
- Gardner, J. "Chloroisocyanurates in the Treatment of Swimming Pool Water." Water Research 7 (1973): 823-833.
- Gerba, C.P. and J. Naranjo, University of Arizona, Unpublished Data, 1999.
- Grenier, J. and R. Denkewicz, "Improved Test Method for the Evaluation of Algicides and Algistats for Swimming Pools", Symposium Series Vol. II, pp 63-68, 1997, NSPI National Meeting, Chicago, ILL.
- Hartwig, W., "To DIN or not to DIN: Ozonation of Pool Water in Public and Commercial Pools", Journal of the Swimming Pool and Spa Industry, 2(1) 1996:25-33.
- Hafer, D., "A Field Evaluation of the Bi-Polar Oxygen Sanitation System/Mineral Purification System", Journal of the Swimming Pool and Spa Industry, 1(3)1995:39-51.
- Hass, C. N. and R. S. Engelbrecht "Chlorine Dynamics during Inactivation of Coliforms,

- Acid-Fast Bacteria, and Yeasts", Water Research 14 (1980):1749-
- Hoff, J. C., "Inactivation of Microbial Agents by Chemical Disinfectants", U.S. Environmental Protection Agency, Report no. EPA/600/2-86/ 067, 1986.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - I: Non-dissociating Organic Compounds", Water Research, 17(1983):173-183.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - II: Dissociating Organic Compounds", Water Research, 17(1983):184-185.
- Hoigne, J., H. Bader, and W. R. Haag, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds III: Inorganic Compounds and Radicals", Water Research, 19(1985):993-1004.
- Kinman, R.N., Water and Wastewater Disinfection with Ozone", Critical Reviews of Environmental Control, 5(1975):141-152,
- Kurzman, G. E., "Ozone-Granular Activated carbon for Disinfection and Purification of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 106.
- Kutz, S. M., L. K. Landeen, M. T. Yahya, and C.
 P. Gerba, "Microbiological Evaluation of Copper-Silver Disinfection Units", 4th Conference on Chemical Disinfection, Binghamton, NY April 10-13, 1988.
- Kuwabara, J. S. and H. V. Leland, "Adsorption of Selanastrum capricornutum (Chlorophyceae) by Copper", *Environmental Science and Technology* 5(1986):197-
- Lange's Handbook of Chemistry, J.A. Dean, ed., McGraw-Hill Book Co., New York, 13th Edition, 1985.
- Legend Labs, St. Paul, MN
- Marks, H. C. and F. B. Strandskov, "Halogens and their mode of action", *Annals of the New York Academy of Sciences* 53(1950):163-
- Minisci, F., A. Citterio, and C. Giordano "Electron Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry." Accounts of Chemical Research 1983, 16, 27-John A. Wojtowicz – Chapter 7.3

- Nalepa, C.J. et al, "Development of a Bromine Stabilizer for Outdoor Pools", Symposium Series Vol. I, pp 12-17, 1999, NSPI National Meeting. Las Vegas, NV.
- National Sanitation Foundation (NSF), Ann Arbor, MI (see website at www.NSF.com)
- National Spa and Pool Institute (NSPI), Alexandria, VA.
- Nelson, G.D. "Special Report 6862 Swimming Pool Disinfection with Chlorinated-striazinetrione Products." Monsanto Chemical Co. St. Louis, MO, March 1967.
- Olin Corporation. Unpublished Data on Swimming Pool Evaluation of Electrochemical Generation of Bromine. 1983.
- OSHA, U.S. Occupational Safety and Health Administration, Washington, DC; see Federal Register 40, 47261 (1975).
- Ozone in Water Treatment: Applications and Engineering, B. Langlais, D. A. Reckhow, and D. R. Brink, Eds. Lewis Publishers, Chelsea, MI, p113, 1991.
- Palmer, C. M. and T. E. Maloney, "Preliminary Screening for Potential Algicides", *Ohio Journal of Science*, 55(1955):1- .
- Penny, P.T. and R.J.G. Roycroft, "Swimming Pool Dermatoses associated with the use of Bromine Disinfectant" *British Medical Journal* August 13, 1983.
- Rice, R. G. "Chemistries of Ozone for Municipal Pool and Spa Water Treatment", *Journal of* the Swimming Pool and Spa Industry, 1(1)1995:25-44.
- Sandel, B.B., Unpublished Data on Testing of Copper-Silver Cartridge, 1992.
- Sandel, B. B., "Disinfection with Chlorine Products – Some Lessons Learned", Symposium Series Vol. I, pp 80-85, 1996, NSPI National Meeting, Phoenix, AZ,
- Shapiro, R. and F.E. Hale, "An Investigation of the Katadyn Treatment of Water with Particular Reference to Swimming Pools", Journal of the New England Water Works Association, 51(1937):113-
- Snoeyink, V. in Water Quality and Treatment, F. W. Pontius, Ed., 4th Edition, McGraw-Hill, Inc., New York, NY, pp. 812-813, 1990.
- Stumm, W. "The Decomposition of Ozone in

- Aqueous Solution", *Helvetica Chimica Acta*, 37(1954):773-
- Taylor, D. S. and J. D. Johnson, "Kinetics of Viral Inactivation by Bromine", in A. J. Rubin, ed., Chemistry of Water Supply and Treatment, Ann Arbor Publishers. Ann Arbor, MI, 1975, pp 369-407.
- Tiefenbrunner, F., "Problems with the Direct Ozonation of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. G. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 152.
- Watt, P.M, D.I. Kennedy, J. Naranjo, J. Sandoval, and C.P. Gerba, "Comparison of the Disinfectant Capabilities of Various Spa Products", Symposium Series Vol. IV, pp 71-76, 1999, NSPI National Meeting, Las Vegas, NV.
- White, C.G., Handbook of Chlorination, Van Nostrand Rheinhold, New York, 1972.
- Wojtowicz, J. A., Unpublished Data on Testing of UV Ozonators, 1985.
- Wojtowicz, J. A., Unpublished Data on Testing of Copper-Silver Ionizer, 1988.
- Wojtowicz, J. A., Unpublished Data on Ozone Reactions, 1989.
- Wojtowicz, J. A., Unpublished Data on Testing of UV-Hydrogen Peroxide, 1989.
- Wojtowicz, J. A., Unpublished Data on Bromine Stabilization, 2000.
- Wojtowicz, J. A., Unpublished Data on Potassium Monopersulfate Stability, 2000.
- Wojtowicz, J.A., "Chlorine Monoxide, Hypochlorous Acid, and Hypochlorites", Kirk-Othmer Encyclopedia of Chemical Technology,

- Fourth Edition, Vol. 5, John Wiley & Sons, Inc., New York, NY, pp 932-968, 1993.
- Wojtowicz, J. A. "Relative Bactericidal Effectiveness of Hypochlorous Acid and Chloroisocyanurates" Journal of the Swimming Pool and Spa Industry, 2(1) 1996;34-41.
- Wojtowicz, J. A. "Ozone", Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 17, 1996, John Wiley & Sons, Inc., New York, NY.
- Wojtowicz, J. A. "Fate of Nitrogen Compounds in Swimming Pool Water", Symposium Series Vol. III, 1998, pp 40-44, NSPI National Meeting, New Orleans, LA.
- Wojtowicz, J. A. Letter to the Editor, Journal of the Swimming Pool and Spa Industry, 3(1) 1998:41-43..
- Wojtowicz, J. A., "Chemistry of Nitrogen Compounds in Swimming Pool Water", Journal of the Swimming Pool and Spa Industry, 4(1) 2001:30-40.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of swimming Pools and Spas" Journal of the Swimming Pool and Spa Industry, 4(1) 2001:41-53.
- Wojtowicz, J. A., "Cyanuric Acid Technology", Journal of the Swimming Pool and Spa Industry, 4(2) 2001:9-16.
- Wuhrman, K. and F. Zobrist, "Investigation of the Bactericidal Effet of silver in Water", Schweiz. Z. Hydrol. 20(1958):218-
- Zhang, Z., "Disinfection Efficiency and Mechanisms of 1-Bromo-3-chloro-5,5dimethylhydantoin", Ph. D. Thesis, Univ. of Houston, 1988.