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Self Accelerating Decomposition
Temperature (SADT)

SADT Test Procedure – The SADT test is
carried out by placing the largest commercial
package in an oven maintained at a constant
temperature for 7 days. The minimum number of
tests is two. If the sample survives at the lower
temperature, fails at the higher temperature,
and if the difference in the test temperature is not
greater than 5.5°C, the SADT is then reported as
an average of these two temperatures.

7.5 – Swimming Pool and Spa Chemical
Safe Storage and Shipping

Temperatures
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Most chemical substances are subject to
some decomposition at elevated temperatures,
including some swimming pool and spa chemi-
cals such as sanitizers and oxidizing agents. De-
partment of Transportation (DOT) regulations
governing the preparation of hazardous materi-
als for transportation are described in the Haz-
ardous Materials Transportation Act. Under these
regulations, the offering for transportation of a
material that is liable to decompose or polymerize
at a temperature of 130°F (54.4°C) or less with
evolution of a dangerous quantity of heat or gas is
forbidden. The determination of whether a mate-
rial is forbidden may be made by the Self Acceler-
ating Decomposition Temperature (SADT) test.
Accelerating rate calorimetry (ARC) and com-
puter simulation offer an alternative to SADT
testing and are discussed in this article.

Accelerating Rate Calorimetry
(ARC)

Procedure – In ARC, a sample (1–10 g) is
placed in a metal bomb (e.g., Ti, volume ~10 mL)
enclosed in a chamber maintained under adia-
batic conditions. The bomb is heated step–wise
(typically 5°C increments) followed by a 5–minute
waiting period during which the calorimeter
searches for evidence of self–heating by the
sample. The calorimeter assumes an exotherm
has started when the self–heat rate is ≥ 0.02°C/
min. Once an exotherm has started, heat from the
sample decomposition raises the temperature of
the bomb and the sample while the calorimeter
inputs only sufficient heat to offset losses to the
outside air. The numerical data provided by the
ARC consist of time, temperature, self–heat rate,
and pressure. Plots of temperature vs time, self–
heat rate vs temperature, time to maximum rate
vs temperature, pressure vs temperature, and
pressure rate vs temperature can be generated.
The data provided allow calculation of heat of
decomposition, rate constant, activation energy,
and critical temperature (or temperature of no
return).

Thermokinetic Theory – The tempera-
ture dependence of reaction rate can be described
by a modified form of the Arrhenius equation
(Townsend and Tou 1980):

1. k = AT2exp(–∆E/RT)

where: k = rate constant, A = pre–exponential
factor, T = °K, ∆E = activation energy, and R = gas
constant (8.314J mol–1 K–1). Assuming zero order
(or initial rate kinetics), the energy balance for an
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with increasing temperature which reaches a
maximum and then falls off precipitously as the
decomposing material is exhausted. An illustra-
tive plot is shown in Figure 1. The activation
energy ∆E is obtained from the slope (–∆E/R),
which is determined by drawing a tangent at the
beginning of the self–heat plot. Using tempera-
tures of 104°C (377.15K) and 170°C (443.15),
which correspond to self–heat rates of 0.01 and
6.0°C/min, yields a value of 32,188 cal/mol as
shown below.

5. ∆E = [Loge (r2/r1)]R/(1/T1 – 1/T2)

    ∆E = [Loge (6.0/0.01)]1.987/(1/443.15 – 1/377.15)

       = 32,188 cal/min.

The activation energy is also obtained from
the temperature dependence of the rate constant
and during critical temperature estimation (see

adiabatic system is given by:

2. MCPdT/dt = ∆HAT2exp(–∆E/RT)

where: M = mass, CP = heat capacity, t = time, and
∆H = heat of reaction. Rearrangement gives the
following differential equation for the initial rate
of change of temperature with time due to self–
heating:

3. dT/dt = [∆H/(MCp)]AT2exp(–∆E/RT)

Activation Energy – Taking Logs of both
sides of equation 3 and rearranging gives:

4. Loge (dT/dt) = –∆E/RT + Loge {[∆H/(MCp)]AT2}

This is in the form: y = mx + b. Plotting Loge (dT/
dt) against 1/T shows an increasing self heat rate

Figure 1 - Self Heat Rate 
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discussion below).

Rate Constant – The rate constant k (and
activation energy) can be determined from the
ARC data via the following equation:

6. k =(dT/dt)/(Tf – Tt) min–1

where: dT/dt = self heat rate (°C/min), Tf = final
temperature (°C), and Tt is the temperature (°C)
at time t (min) below maximum rate. A plot of loge
k vs 1/T °K gives the activation energy (from the
slope = ∆E/R) and the pre–exponential (factor
from the y intercept).

Heat of Decomposition – The heat of de-
composition (∆H) is calculated from the ARC
provided adiabatic temperature rise and the φ
(phi) factor, which allows allocation of the heat
effect entirely to the sample. The phi factor for the
ARC run of Figure 1 is calculated using the
following equation where: MB (82.0g), MS (2.5g),
CPB (0.11cal g–1 K–1) and CVS (0.5cal g–1 K–1) are the
masses and heat capacities of the bomb and
sample, respectively.

7. φ = 1 + MBCPB/(MSCVS) = 1 + 82•0.11/(2.5•0.5)

       = 8.22

The value of ∆H is obtained from the adiabatic
temperature rise Tab.

8. ∆H = DTabφCV

          = (Tf – Ti) φCV

           = (180.3 – 122.7)•8.22•0.5

           = 236.7 cal/g

where: Ti and Tf are the initial and final tempera-
tures, respectively.

Time to Maximum Rate – Integration of
equation 3 and application of boundary condi-
tions, gives the following equation for time to
maximum rate (tmr), also referred to as time to
explosion.

9. tmr ≅ RT2/(∆EdT/dt) ≅ RT2CPM/(k∆H∆E)

Material/Equipment Time Constant –
Under steady–state conditions, thermal equilib-
rium is represented by the following heat–trans-
fer equation:

10. US(T – Ta) = M∆HAT2exp(–∆E/RT)

where: U = thermal conductivity, S = container
surface area, T is the product temperature, and
Ta = ambient temperature. By varying Ta, it can
be shown that there exists a unique temperature
(the critical temperature Tc) above which ther-
mal equilibrium cannot exist and thermal run-
away occurs.

At the critical temperature (or temperature
of no return), the adiabatic time to maximum rate
tc = τ (or time constant) is independent of decom-
position – being a function of engineering param-
eters only. The time constant is calculable from
the following equation:

11. τ = MCP/(US)

Critical Temperature Estimate –Taking
Logs of both sides of equation 9 and rearranging
gives:

12. 1/T = (R/∆E)Loge tmr – (R/∆E)Loge(RCPMT2/∆E∆H)

This is in the form: y = mx + bT2. Values of tmr are
calculated using zero order self heat rates (SHR0)
adjusted for the phi factor. Zero order self–heat
rates are calculated using the equation of the
tangent line drawn in Figure 1. The equation of
the tangent line is:

13. Loge SHR0 = –16.199(1/T) + 38.345

Zero order self–heat rates adjusted for the
phi factor are given by the following equation:

14. SHR0(φ) = exp(–16.199(1/T) + 38.345)φ

A Log–Log plot of 1/T vs tmr should give a
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straight line with slope R/∆E (see Figure 2).
Linear regression can be employed to obtain an
equation of the line and allow extrapolation to
lower temperatures. The temperature at which
the value of tmr equals the time constant t is equal

to the critical temperature (Tc).

Calculation of SADT from ARC – An
equation for calculating TSADT can be derived from
ARC data (Fischer and Goetz 1991). Heat genera-
tion (QG) is given by:

15. QG = Aexp(–∆E/RT)M∆H

Heat loss (QL) is given by:

16. QL = US(T – T0)

where: T0 = ambient air temperature. Equating
QG and QL gives:

17. Aexp(–∆E/RT)M∆H = US(T – T0)

Differentiation yields:

18. ∆E/RT2Aexp(–∆E/RT)M∆H = US

Setting T = TC, and substituting from equation 17.

19. ∆E/RTC
2US(TC – T0) = US

Cancellation and rearrangement gives:

20. T0 = TC – RTC
2/∆E

where: T0 = TSADT +273.15, TC = TNR + 273.15

TNR (@ τ) = MCP/US

Determination of Critical
Temperature via Computer

Simulation

The diffusion of heat in a cylindrical con-
tainer of material with internal heat generation
can be described by the following second order
partial differential equation (Rohsenow and

Figure 2 - Time to Maximum Rate 
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Hartnett 1973):

21. (1/α)∂T/∂t = (1/r)∂T/∂r + ∂2T/∂r2 + ∂2T/∂x2 + Q/K

where:

∂ = partial differential operator

T = temperature

t = time

r = radial distance

x = axial distance

α = K/(ρCp) = thermal diffusivity

K = thermal conductivity

ρ = bulk density

Cp = heat capacity

Q = rate of heat generation

The independent variable T in equation 21 is
related to independent variable time (t) and spa-
tial coordinates (x and r) in the conducting media
by means of a heat balance differential equation
derived from Fourier’s law of heat conduction Qn
= –K∂T/∂n; where: Qn is a vector and n is a
direction normal to the surface A.

Although equation 21 cannot be solved ana-
lytically, it can be solved using the methods of
finite differences. The temperature is determined
at only a finite number of discrete points called
nodes. A nodal network in a cylindrical container
can be obtained by subdividing the radial and
axial distances in a vertical mid–plane into small
segments. Due to symmetry, only a single mid–
plane in a hemi–cylinder need be considered.
Because the temperature of a particular node at
some time is independent of the temperatures at
other nodes at the same time, the temperature of
that node (with vertical and horizontal coordi-
nates i, j) at time (n + 1) can be calculated
explicitly in terms of its temperature and that of
its neighboring nodes at time (n).

The partial derivatives in equation 21 are
replaced with finite difference approximations
obtained from a Taylor’s series expansion of the
temperatures in the control volume to yield a
system of algebraic equations.

An alternate approach is to use the Fourier
Heat Theorem:

22. dq/dt = KAdT/dx

where: dq/dt is the instantaneous rate of heat
flow through cross sectional area A subject to a
temperature gradient equal to dT/dx. The differ-
ential equation 22 can be approximated using
finite increments (∆) in place of infinitesimal
differentials (d) as follows:

23. ∆q = Q = KA∆T∆t/∆x

Equation 23 can be applied to a generalized nodal
cell. The vertical and horizontal heat flows in and
out of the cell and the heat accumulated allow
calculation of the temperature changes with time.

A computer program can be written to per-
form the calculations as a function of time. The
input to the computer program includes the physi-
cal and chemical data and constants listed above
as well as the container dimensions. The heat
generating term requires not only the heat of
reaction but also the kinetics, which can be deter-
mined by differential thermal analysis (DTA)
and differential scanning calorimetry (DSC). For
example, the kinetic constants can be determined
according to ASTM E698–79 (1984).
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