Sanitizer and Oxidizer Product Information Summaries

John A. Wojtowicz Chemcon

Summary sheets containing product description, properties, and performance data for various sanitizers, oxidizers, and sanitation systems shown below are based on the following published papers:

- Wojtowicz, J. A., "Survey of Swimming Pool/Spa Sanitizers and Sanitation Systems", Journal of the Swimming Pool and Spa Industry 4(1)2001:9-29.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of Swimming Pools and Spas", Journal of the Swimming Pool and Spa Industry 4(1)2001:41 - 53.

Some of the categories covered in the summaries include: disinfection, algae control, oxidation of contaminants, cost, and cost effectiveness.

- 1. Chlorine
- 2. Bromine
- 3. Ozone: Data on Disinfection and Oxidation
- 4. Ultraviolet (UV) Ozone
- 5. Corona Discharge (CD) Ozone (DIN Design)
- 6. Corona Discharge (CD) Ozone (Modified DIN Design)
- 7. Copper, Silver, and Zinc

- 8. Copper-Silver Ionizers
- 9. Copper-Silver Cartridges
- 10. Zinc-Silver Cartridges
- 11. Potassium Monopersulfate
- 12. Potassium Peroxydisulfate (Persulfate)
- 13. Polyhexamethylene Biguanide (PHMB)
- 14. Ultraviolet Light (UV) and Hydrogen Peroxide

About the Author

John A. Wojtowicz currently works as a consultant, and is retired from his position as senior consulting scientist for Olin Corp. Seventeen of his 47 years of industrial experience were spent in the swimming pool chemical area and primarily involved swimming pool chemistry and process and product research on calcium hypochlorite, trichloroisocyanuric acid, and sodium dichloroisocyanurate. He holds over 55 patents and has published over 40 technical papers. His areas of expertise include swimming pool chemistry, manufacture and product and process development in hypochlorites and chloro-isocyanurates, alternate sanitizers and sanitation systems (i.e.: ozone, hydrogen peroxide-UV, bromine, etc.), chloramines and bromamines, computer programming, and expert witnessing. He may be reached at Chemcon, 623-535-8851.

Volume 5, Number 1, pages 20–38

Copyright © 2004 by JSPSI

All rights of reproduction in any form reserved. 20

Journal of the Swimming Pool and Spa Industry

		1. CHLORINE								
Sources		Form	% Av. Cl	\$/Ib av. Cl						
	Chlorine	Liquefied Gas	100	<1.00						
	Calcium Hypochlorite	Granular & Tablets	65 (75)	2.77						
	Lithium Hypochlorite	Granular	35	~8.50						
	Sodium Hypochlorite	Liquid	10	~1.50						
	Sodium Dichloroisocyanurat	e Granular	56 (63)	3.21						
	Trichloroisocyanuric Acid	Granular & Tablets	90	2.22						
Active Agent	 At pool pH, all chlorine produce 	cts provide free available chl	orine (FAC).							
	 FAC consists of the disinfecta 	int hypochlorous acid (HOCI)	and hypochlorite	e ion (ClO⁻).						
	•The concentration of HOCI is									
	HOCI \rightleftharpoons H ⁺ + CIO ⁻ Ionization	constant K _A = [H ⁺][ClO⁻]/[HO	$CI] = 2.88 \times 10^{-8}$	at 25°C						
	$[HOCI]/[CIO^{-}] = [H^{+}]/K_{A} = 10^{-p+}$									
Decomposition	 Unstabilized chlorine is more 									
By Sunlight	photoinstability of hypochlorite 350 nm.									
Stabilization	•Chlorine is stabilized by cyan									
	monochloroisocyanurate ion, v									
	decomposition is ~1%/day and									
Disinfection	Effect of pH	 Disinfection rate changes 	with pH due to th	e changing ratio						
		[HOCI]/[CIO ⁻].								
		 Increased ionization of HC 		s offset by increased						
	hydrolysis of chloroisocyanurates.									
	Effect of Temperature	Disinfection rate increases								
	Effect of Cyanuric Acid •Decreases disinfection rate by reducing the equilibrium conc. of HOCI.									
	•Decreases disinfection rate by formation of chloramines (ie, combined									
	Amino-N Compounds	chlorine, CAC) that strongly bind HOCI.								
	Effect of Microorganism			Kill Time t (min.) = 0.5 ppm av. Cl						
	F and	Hoff 1986								
	<i>E. coli</i> Polio 1	0.034-0.05								
	Rotavirus	1.1–2.5	<u>2.2–5.0</u> 0.02–0.10							
NSPI Recom-	Kotavirus	Minimum	Ideal	Maximum						
Mendations	FAC (ppm): Pools	1	2-4	10						
monautono	FAC (ppm): Spas	2	3-5	10						
*100-120 ppm	CAC (ppm)	0	0	0.2						
for chloroiso-	Cyanuric Acid (ppm)	10	30–50	150						
cyanurate or	pH	7.2	7.4–7.6	7.8						
bromine treated	Carbonate Alkalinity (ppm)	60	80-100*							
pools.	Calcium Hardness (ppm)	150	200-400							
Algae Control										
•	 Chlorine at 2 ppm is toxic to many species of algae (Palmer and Maloney 1955). A newly formed green algae bloom can be completely oxidized by a single shock dose of hypochlorite 									
	chlorine, eg, 1 lb calcium hypochlorite per 10,000 gals.									
	•An infestation of black algae can usually be eradicated with a triple shock dose of hypochlorite chlorine									
	in combination with brushing and vacuuming.									
Oxidation of	•Chlorine oxidizes contaminants such as ammonia, urea, amino acids, creatinine, etc.									
Contaminants	•Ammonia reacts with chlorine to form chloramines, some of which (eg, trichloramine) are potential eye									
	irritants. •Ammonia chloramines absorb UV light and are therefore decomposed by sunlight.									
	•Ammonia is oxidized via breakpoint chlorination via the overall reaction:									
	$2NH_3 + 3HOCI \rightarrow N_2 + 3HCI +$	-								
	•For example, 0.25 ppm amm		onochloramine) is	s 87% oxidized by 3.55 ppm						
	av. Cl in 10 minutes at pH 7.5		•	PP						
	•Oxidation of other nitrogen co			in the following order:						
	ammonia > amino acids > ure		and the starying							
Cost			ost effective met	hod of swimming pool and sr						
	•Chlorine in its various forms is the most economical and cost effective method of swimming pool and spa sanitation, eg, the single season sanitizer cost for a 25,000-gal. residential swimming pool in Phoenix, AZ									
	sanitation, eg, the single seas	on sanitizer cost for a 25.000	-gal. residential s	swimming pool in Phoenix. Az						

		2.	BROMINE									
Sources	Bromine	Compounds	Form	% Equiv. Av.	Cl \$ per lb Equiv. Av. Cl							
	Bromochlorod	imethylhydantoin	Granular &	56.4 (actual) 7.80							
		DMH)	Tablets									
		r, 28.2% av. Cl	90.4% puri									
		ethylhydantoin	Granular & Tablets									
Generation of Bromine	•Bromine can be generated in situ from bromide ion plus oxidizing agents such as hypochlorites, chloroisocyanurates, monopersulfate, ozone, or electrical energy.											
Active Agent		•At pool pH, all bromine products provide free available bromine, ie, the disinfectant hypobromous acid (HOBr) as well as hypobromite ion (BrO ⁻).										
		on of HOBr is conti		uilibrium:								
	HOBr ≓ H ⁺ + E [HOBr]/[BrO ⁻] =	brO [−] Ionization cons H ⁺]/K _A = 10 ^{-pH} /K _A =	stant K _A = [H ⁺] = 82/18 @ pH 7	[BrO⁻]/[HOBr] = 7.2 7.5 = 50/50 @ pH 8.	x 10 ⁻⁹ at 25°C. 1							
Decomposition					by sunlight (≥290 nm) in 3							
by Sunlight		photoinstability of h out to about 390 nr		, which has maximu	m absorption at 330 nm but							
Decomposition	 Hypochlorite ior 	n can cleave the hyd	lantoin ring, es	pecially at higher pH	I, eg, dichlorodimethylhydantoin							
by Hypochlorite		, and N-chloroisopro										
Stabilization Wojtowicz 2000		partially stabilized om ~100% to 75% i		antoin (DMH), eg, 5	0 ppm DMH reduces							
) ppm cyanuric acid	is required to	attain a similar impro	ovement.							
Factors Affecting	Effect of pH				es with pH due to the changing							
Disinfection			tio [HOBr]/[BrO lorine.	⁻], it is less sensitive	s less sensitive to pH than in the case of							
	Effect of Tempe	erature •A	•As with HOCI, disinfection rate increases with temperature.									
	Effect of Dimet	nylhydantoin ●D	•Decreases disinfection rate by reducing the equilibrium									
	Concentration	the second se	concentration of HOBr.									
	Effect of Ammo		•Disinfection rate decreases by formation of bromamines (combined									
	Amino-N Comp	sta	able than chlore	amines.	ive as free bromine but are less							
Disinfection Data					eg, 3 ppm FAC from							
<u>Gerba & Naranjo</u> <u>1999</u>	hypochlorite prov pH 7.5.	vided 99.99% inactiv	ation of S. fae	calis and P. aerugin	osa after 2 minutes at 25°C and							
	 By comparison, the same conditi 		rated bromine	(EGB) provided 92.8	and 85.5 % inactivation under							
				opm Free Av. Brom	ine, 25°C, pH 7.5)							
		S. faec			P. aerugenosa							
	Time (min.)	EGB	BCDMH	EGB	BCDMH							
	2	92.8	66.1	85.5	85.2							
NSPI Recom-	4	99.9	99.8 Minimum	99.99	99.8							
mendations	Free Av. Br (pp)	m): Pools & Spas	2	<u> </u>	Maximum 10							
mendations	pH	iij. Foois & Spas	7.2	7.4–7.6	7.8							
	Carbonate Alka	linity (ppm)	60	100-120	180							
	Calcium Hardno		150	200-400	500-1,000+							
Algae Control		, bromine is toxic to										
Oxidation of				and urea faster than	n chlorine.							
Contaminants	•The oxidation o	f ammonia is similaı → N₂ + 3HBr + 3H₂C	to breakpoint		······································							
				ounds is slower the	reaction rate varying in the							
		ammonia > amino a										
Eye and Skin				es than chloramines.								
Irritation	 Instances of ski 		rash) have bee		and spas treated with BCDMH							
Cost		ion is more expensi		e sanitation								
		and a second supported										

			OZONE: DATA							
Ozone Disinfect	tion Data							e data be	low), the disinfection rate can	
<u>Hoff 1986</u>	Ļ	be	affected by prese		v oxic					
		Microorganism				Ct (ppm•min) @ 5°C and 6-7 pH				
			oli						0.02	
			io 1						0.1–0.2	
			avirus						006–0.06	
	-		Lamblia cysts						0.5–0.6	
			Mutis cysts						1.8–2.0	
		nd p		on of Swimm		itowicz 198	<u>9).</u>		s at High Contaminant and	
Conta	minant		Ozone	Reaction Time	n	Mols C	zone	e Consu	med per Mol Contaminant	
	Conc. (ppn	1)	ppm	Mins.		Theoret	ical		Calc'd.*(Found)	
Urea	26.9	-	12.4	68		8			0.03 (0.01)	
Ammonia	1.6		11.4	55		4			0.2 (0.3)	
Glycine	6.7		13.8	13		7			3.2 (2.9)	
Creatinine	10.1		14.5	72		18			1.6 (0.3)	
*Based on publis		ants		33-1985).	I			-	······································	
			The grie of all to	Calculated	Data	a on Oxida	tion	of Conta	minants	
•Calculated data	for some		Contaminant	Nitrogen		Contamina			I. % Contaminant Oxidation	
bather contamina			oontainnaitt	ppm		ppm		oulo u		
based on 1 ppm		l lr		0.876	_	1.877			0.002	
ppm CD ozone,		Urea Monochloramine		0.0443		0.163			2.2	
minute reaction t				0.0443		0.103			2.2 14 ^A	
published rate co		Glycine Creatinine		0.0433		0.232				
at 25°C.									0.03	
Comparative Ca	laulated		A) Byproducts ammonia and formaldehyde are largely unoxidized. Initial Contaminant Oxidation Rate (% per min.) ^A							
Data on Oxidati								lorine ^D	Bromine ^D	
Contaminants		Contaminant								
Containinants		A		1.6 ppb^B		0 ppm ^c		3 ppm	4.6 ppm	
		Ammonim ion Ammonia		•		0		3.8	7.9	
				1.6x10 ⁻⁵ 1.7x10 ⁻³		0.01	A COMPANY OF A DESCRIPTION OF A	3.8	7.9 >7.9	
		Ur	nochloramine	1.3x10 ⁻⁶		8x10 ⁻⁴		>3.8 0.11	0.23	
				1.1x10 ⁻⁵						
			eatinine ^E /cine ^E	1.1x10 ⁻²		7×10^{-3}		0.06	0.04	
A) 1175 00 05	<u></u>	· · ·			~	1.7	L	0.33	>2.6	
	ulated for initial	CD	ozone conc. in s	wimming pool	con	tact chamb	er. D) Experi	tate UV ozone concentration mental data <u>(Wojtowicz 1998</u>	
Summary of Oz									of ozone toward organic	
Oxidative Capa									ds on the original functionality	
		of a compound as well as that of its byproducts, eg, the initial rate constant for oxidation of the amino acid α -alanine is 6.4x10 ⁴ L/mol/sec. whereas that for the byproducts ammonia,								
		acetaldehyde, and acetic acid are 20, 1.5, and $\leq 3 \times 10^{-5}$ L/mol/sec., respectively.								
		•Ozone reacts exceedingly slowly with urea (the main bather contaminant) and also slowly with another bather contaminant: arratining								
		with another bather contaminant: creatinine.								
		•Decomposing ozone does not appear to affect the rate of reaction.								
		•Ozone does not react at all with ammonium ion (the main form of ammonia at pool pH), but does react slowly with the small fraction of ammonia as well as with its chlorinated product: monochloramine.								
			•Ozone only partially oxidizes organic matter and reacts primarily with readily oxidzable functionalities such as amine (-NH ₂) and sulfhydryl (-SH) groups (present in amino acids							
		and possibly protienaceous matter) and with compounds containing reactive carbon-carbon								
		 double bonds (-C=C-). Both chlorine and bromine are better overall oxidants for bather contaminants as shown in 								

		4. ULTRAVOILET (UV) OZONE					
Device Description		•A plastic enclosure containing one or more UV lamps, fitted with an air inlet and outlet.					
Principle of Operation	very low ozone conc. (0.03–0.07 vol. %) that is injected into the water via a vacu venturi in the return line.						
Claimed Ozone Output		Pools: 0.25–0.83 g/h; Spas: 0.042–0.33 g/h					
Contact/Reaction Char		•None					
Calc'd. Ozone Absorpt		Pools: 71–87%; Spas: 83–94%					
Ozone Offgas Destruct		•None					
Calc'd. Ozone Conc. in		Pools: 58 ppm; Spas: 67 ppm					
Calc'd Steady State Oz	one Conc.	Pools: 0.34–0.78 ppb					
Before Reaction		Spas: 0.35–3.0 ppb					
Calc'd. Time to 99% St	eady State	Pools: 40 min.; Spas: 9 min.					
	.	Testing of UV Ozonators					
Disinfection	bather-intro at spa temp •Other tests	vith UV ozone (0.25 g/h) alone showed a very slow disinfection rate (~0.8%/min.) of duced bacteria as the water was heated from 77 to 95°F over a two-hour period. •Tests erature (~100°F) showed no killing of bacteria over a 30-min. period (Wojtowicz 1985), at 106°F showed similar results (Watt et al 1999).					
		n: Ozone concentration too low (as shown above) for significant effect on disinfection.					
Algae Control (Wojtowicz 1985)	4 days desp	pool tests with UV ozone (0.5 and 1.0 g/h) resulted in green algae blooms after 3 and ite continuous ozonation.					
Oxidation of Contaminants	rate of 0.3 g •Other tests	 No oxidation of urea was observed under spa conditions over a 36-hour period at an ozone feed rate of 0.3 g/hour (<u>Wojtowicz 1985</u>). Other tests showed similar results (<u>Adams et al 1999</u>). 					
		n: Ozone concentration too low (as shown above) for significant effect on oxidation.					
Generation of Bromine From Bromide Ion	•Spa tests a efficiencies	it 25 and 35°C with UV ozone (0.3 g/h) resulted in available bromine generation of only 21 and 8%, respectively.					
		Assessment					
Chlorine Concentration		ufacturer Recommendation: Typically about 0.5–1.0 ppm					
Chlorine Concentration	•Tec claim •The	ufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and					
	•Tec claim •The spas	ufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection.					
Chlorine Concentration	•Tec claim •The spas •Clai •Tec	Nufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant					
Chlorine Usage	•Tec claim •The spas •Clai •Tec oxida	hufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage.					
	•Tec claim •The spas •Clai •Tec oxida	initial assessment: The minimal effect of UV ozone on disinfection does not support hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly.					
Chlorine Usage Operational and Analyt	•Tec claim •The spas •Clai •Tec oxida tical •No v	hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps.					
Chlorine Usage Operational and Analyt	•Tec claim •The spas •Clai •Tec oxida tical •No v •Ozo •No v	nufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement.					
Chlorine Usage Operational and Analyt	•Tec claim •The spas •Clai •Tec oxida tical •No v •Ozo •No v •No v •No r •The to oz	ufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement. nethod to measure the low ozone concentrations. lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due one build up.					
Chlorine Usage Operational and Analy Deficiencies Safety	•Tec claim •The spas •Clai •Tec oxida tical •No v •Ozo •No v •No v •No r •The to oz	ufacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement. nethod to measure the low ozone concentrations. lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due one build up. IA permissible exposure limit is 0.1 ppm for an 8-hour exposure.					
Chlorine Usage Operational and Analy Deficiencies Safety NSF Testing	tical ·Tec claim ·The spas ·Clai ·Tec oxida ·Tec oxida ·Tec oxida ·Tec oxida ·Tec oxida ·Tec oxida ·Ozo ·No v ·Ozo ·No v ·No v ·No v ·No v ·No v ·Only delive	utfacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement. nethod to measure the low ozone concentrations. lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due one build up. 1A permissible exposure limit is 0.1 ppm for an 8-hour exposure. v one ozone generator (rated at 1g/h) was tested and requires NSF approved feeders ering 2 ppm chlorine or 4 ppm bromine.					
Chlorine Usage Operational and Analy Deficiencies Safety		utfacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement. method to measure the low ozone concentrations. lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due one build up. 14 permissible exposure limit is 0.1 ppm for an 8-hour exposure. v one ozone generator (rated at 1g/h) was tested and requires NSF approved feeders ering 2 ppm chlorine or 4 ppm bromine. ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to 00 gals. retail for \$500 to \$700.					
Chlorine Usage Operational and Analy Deficiencies Safety NSF Testing		utfacturer Recommendation: Typically about 0.5–1.0 ppm hnical Assessment: The minimal effect of UV ozone on disinfection does not support s of reduced chlorine maintenance concentrations. refore, current NSPI recommended ideal free chlorine levels for pools (2–4 ppm) and (3–5 ppm) would be necessary for adequate disinfection. ms: up to 50–80% reduction. hnical Assessment: The minimal effect on disinfection and lack of significant tion capacity does not support claims of reduced chlorine usage. way to tell if unit is operating properly. ne output decreases with age of lamps. way to tell if lamps need replacement. nethod to measure the low ozone concentrations. lack of ozone offgas destruction poses a potential toxicity problem in indoor spas due one build up. 14 permissible exposure limit is 0.1 ppm for an 8-hour exposure. v one ozone generator (rated at 1g/h) was tested and requires NSF approved feeders ering 2 ppm chlorine or 4 ppm bromine. ozone generators, with production rates of 0.25 to 0.44 g/h for pools of 18,000 to					

	5. CORONA DISCHA	ARGE (CD) OZO	NE: DIN 1964	3		
CD Ozone Generation				a discharge) from very dry air. The		
	required ozone concentr	ration is ≥18 g/m ³	(~1.5 wt. %).			
The Ozone-Granular Activa-	Applicability	•Large public po				
ted Carbon (GAC) Process	Treatment			apid sand filtration, full flow		
<u>DIN 1984</u>	Sequence ozonation, GA		filtration, ozor	e offgas destruction, and		
		chlorination.		-		
	Ozone Dosage	•0.8–1.0 ppm if 2	28°C			
		•1.0-1.2 ppm ab	ove 28°C			
	Contact Time	•≥2 minutes; allo	ws inactivatio	n of microorgan-isms and a		
	(min.)	moderate reduct	ion of COD by	partial oxidation of bather		
		contaminants.				
	GAC Filtration	 Destroys ozone 	e (to ≤0.05 ppr	n) and chlorine.		
	Chlorine Dosage	•0.5 ppm				
	Pool Turnover Time	•~2 hours				
	Water Purge	•~30L/bather to	limit mineral s	alt build-up.		
Disinfection Objectives	Combined Chlorine		_≤0.2 ppm @			
	Oxidation-Reduction P	otential (ORP)	750 mv. @ p			
			770 mv @, p			
	Effective Kill Time		~30 seconds			
	Bacterial Colonies		<100 per ml			
	E. coli		0 per 100 m			
Algae Control				not used as the primary sanitizer.		
Chemical Oxygen Demand			ollutants ente	ring the pool per bather correspond		
(COD) Reduction Data	to a COD of 4.0 g KMnO ₄ /cu. meter.					
	•The combined flocculation-filtration-chlorination process reduces the COD (excluding					
	urea and ammonia) of the water by the equivalent of 2.0 g KMnO ₄ /cu. meter.					
	•Thus 2 cu. meters of water/bather have to be treated to remove the pollutant load.					
	 In the combined flocculation-filtration-ozonation-GAC filtration-chlorination process, the COD reduction is 20% higher, ie, 2.4 g KMnO₄/cu. m. 					
	•Thus only 1.67 cu. meters/bather have to be treated to remove the pollutant load, resulting					
COD Reduction Summary	in a smaller treatment p		······			
COD Reduction Summary	•Flocculation-filtration-cl					
Effects of GAC Filtration	•Ozonation-GAC filtration		an convert on	mania ablaraminas quab as		
Effects of GAC Fillration	•GAC destroys ozone and chlorine and can convert ammonia chloramines such as					
	monochloramine to elemental nitrogen.					
	•GAC adsorbs organic matter and microorganisms and may become biologically active, increasing contaminant removal through biodegradation.					
	•The relative effects of ozone and GAC on COD reduction are unknown, but in view of					
	ozone's ineffectiveness in oxidizing major bather contami-nants, COD reduction by GAC					
	may in fact exceed that due to ozone.					
Cost of Ozone Generators		uction Rate (g/h)	Approximate		
(not including peripheral	Air Feed (1.5 wt. % O ₃)) O ₂ Feed (10	wt. % O ₃)	Cost		
equipment)		2-	7	\$4,000–\$11,000		
	12–200	20_3		\$10,000-\$25,000		
		750–2		\$35,000-\$60,000		
Impact of Equipment Cost				AC system are high and recovery of		
	capital costs through low					
	 This process is cost eff 					
Generation of Bromine				ne for sanitizing whirlpools (ie, spas).		
From Bromide Ion				an efficiency of only 50%.		
	•The efficiency would be lower at a typical spa temperature of 40°C due to increased ozone					
	decomposition.					

6	. CORONA DISCHAR	GE (CD) C	ZONE: I	MODIFIED DIN DESIGN			
A. Full Flow Ozonation	Applicability		nstallation				
<u>Hartwig 1996</u>	Process Sequence	•Floccu	lation (or	otional), ozonation, mixed media filtration, ozone			
				n, and chlorination.			
	Filter Construction			e-resistant sand filters, sized to allow sufficient head			
			space for ozone contacting.				
	Ozone Injection	Main stream or side stream					
	Recommended	•Varies from 0.15–1.0 ppm depending on water facility.					
	Ozone Dosage	······································					
	Contact Time	•No data available (DIN design requires ≥ 2 min.).					
	Aqueous Ozone	•A GAC	•A GAC layer atop the sand media destroys the dissolved ozone a				
	Destruction	well as chlorine.					
	Chlorine Dosage	•DIN de	esign req	uires 0.5 ppm.			
	Turnover Time	•~6 hou	urs.				
Concerns	 Flocculation-filtration 	n-chlorinat	tion can r	emove 80% of the pollution load.			
	 Eliminating flocculat 	ion will se	riously a	fect contaminant removal and put more emphasis on			
	much more expensiv	e ozonatio	on.				
	•The lower turnover r			contaminant removal.			
B. Partial Flow Ozonation	Applicability	 Retrofit 	to existin	ng installations.			
<u>Hartwig (1996)</u>	Process			ream ozonation, contacting/GAC filtration, offgas			
	Sequence	ozone d	estructior	n, and chlorination.			
	% of Full Flow	Typical		•10–50%			
	Ozonation	Recomm	nended	•25–40%			
	Recommended	•Varies	-1.0 ppm depending on water facility.				
	Ozone Dosage	e					
	Contact Time	 No data available (DIN design requires ≥ 2 min.). 					
	Aqueous Ozone	•A combination contact chamber and GAC filter is employed,					
	Destruction	however, some prefabricated systems do not destroy ozone in					
		solution or in offgases.					
	Chlorine Dosage	•DIN 19643 requires 0.5 ppm.					
	Turnover Rate	•~6 hours.					
Concerns	•Lack of flocculation, in DIN 19643.	use of on	ly partial	flow ozonation, and a lower turnover rate than used			
	Assessm	nent of Pr	ocesses	A and B			
Factors Affecting	Combined Chlorine		•No da	a available.			
Disinfection Rate	ORP		•No da	a available.			
	Chemical Oxygen D	emand	•No da	a available.			
Disinfection Objectives	Bacterial Colonies		•No da	a available.			
	E. coli		•No da	a available.			
Algae Control	 Although ozone is to 	oxic to mai	ny specie	es of algae, it is not used as the primary sanitizer.			
Oxidation of Contaminants				increases the non-urea and ammonia COD			
	reduction by about 20)% (comp	ared to c	hlorination) and also requires a water purge and an			
	effective GAC filter (i	e, biologic	ally activ	e), any significant departure from DIN 19643 specs.			
	will result in a lower in						
				ation, with only 10% of full flow ozonation, and with a			
			t be expe	cted to even come close to the COD reduction			
	achieved by DIN 19643.						
Cost				hlorination (see Sheet 5).			
Or at Effer all				pe of system employed.			
Cost Effectiveness				n is in water facilities with high bather loads.			
	•The cost effectivene bather contaminants			systems will depend on how well they remove ptable water quality.			
	•As mentioned above DIN 19643.	e some of	the modi	fications are expected to remove far less COD than			

			ER, SILVER,							
Sources	N		er-silver ioni: tric acid and			s, co	pper sulfate, and copper chelates			
		and silver compounds such as silver oxide, and silver nitrate.								
		Zinc •Zinc-silver Cartridges.								
Disinfection Data For Silver	Silver (ppb) 99.9% Kill Time (mins.) of <i>E. coli</i> *@ 25°C and pH 7.5									
Wuhrman and Zobrist 1958	10 432									
	30					86				
	90					32				
	270					13				
							hloride ion increased kill time by mins. for each 10 ppm hardness.			
Swimming Pool Testing Shapiro and Hale 1937	•Silver was shown to be unsatisfactory for swimming pool disinfection. •Bacteria co were unaffected and consisted of S. aureus, S. albus, and streptococci which can c									
·	eye, ear, nose					,				
Disinfection Data for Copper- Silver Ionizer w/o Chlorine		ool Te	st: High bac	teria c			2,000 cfu/mL) were observed on bitowicz 1988)			
							(104°F) (Sandel 1996)			
					Before Use		After 15 mins. ^B			
	Standard F	late C	ount, SPC		<1/mL		>3,000/mL			
	Total & Feca			(0 of 5 positiv	e	4 of 5 positive			
	Fecal Stretococci, MPN				0 of 5 positiv	e	5 of 5 positive			
	A) Most Probable Number. B) Even after 30 mins. SPC was >3,000 cfu/mL and Fecal Stretococci (MPN) was 5 of 5 positive.									
Disinfection Data For Copper,	Copper (ppm		lver (ppm)		CI (ppm)		One-Minute % Kill			
Silver, and Chlorine	0.39		0		0		1			
Kutz, Landeedn, Yahya, and	0		0.06	0			2			
<u>Gerba 1988</u>	0.48		0.04		0		7			
	0		0		0.2		99.9			
	0.47		0.04		0.2	99.99				
	 Tests were done in well water with only 0.02 ppm chloride. Chloride ion is known to reduce the bactericidal effectiveness of silver. 									
Disinfection Data For Zinc	 Antibacterial 	prope	rties of zinc a	are mu	uch less than	for o	copper or silver.			
Algae Control Data For							Copper (ppm)			
Copper	Algae		% Cont	rol	Algistat	tic	Algicidal			
Fitzgerald and Jackson 1979	Chlorella py.		0		0.12-0.1	15				
			100		0.21-0.4	44	>0.6			
	Phormidium in	า.	0		0.14-0.	21				
			100		0.59		>0.6			
	Pleurochloris		100				>0.6			
Algae Control Data For Silver Adamson and Sommerfeld 1980	 Silver at 64 p mustard algae 	•	as shown to t	e effe	ective agains	t blue	e-green but not against green or			
Algae Control Data For Zinc	•Zinc is much		effective than	coppe	er by a facto	r of a	ibout 10.			
Oxidation of Contaminants	•Copper, silve									
Staining Potential							g a potential for staining.			
	•Copper can									
							of pool surfaces will occur over			
							itate from the water.			
		on, co					should be used only on an as			
Precipitation Potential		cipitate		nc carl	bonate at co	ncen	trations of a few ppm and may			

		8. COPPER-SILV	ER IONIZERS						
Device Description	control pan	 An electrolytic cell consisting of a pair of copper-silver electrodes, a DC power supply, and control panel. Device is installed in water return line to pool or spa. 							
Principle of Operation		•As water flows through the cell, a DC current generates soluble copper and silver ions.							
Recommended Ion		Copper 0.2–0.4 ppm							
Concentrations		Silver ~20-40 ppb (assuming 90/10 copper-silver electrodes).							
Recommended Av. Cl	0 to ~0.2 p	0 to ~0.2 ppm.							
Miantenance of Chlorine	•The extremely low recommended av. CI will be very difficult to measure because it is at t								
Concentration	bottom of the scale.								
	•It will als		intain under the twir	demands of UV decomposition and					
Chlorine Usage	•The main sunlight an	chlorine demand in d contaminant oxidat	i outdoor swimming p lion.	pools is due to the combined effect of					
	 In residen contaminar 	tial pools, chlorine c nts, whereas, in publi	onsumption due to su c pools with high bath	Inlight exceeds that due to oxidation of er loads, the reverse may be true.					
	chlorine wi		o satisfy this demand	duce this demand and the low level of , consequently, significant reduction in					
Disinfection	•Swimming pool and spa tests show unacceptable disinfection in the absence of chlorine.								
	•Since copper and silver contribute minimally to the disinfection rate in the presence of av. Cl, the extremely low recommended av. Cl level of 0.2 ppm would be insufficient for adequate disinfection in stabilized pools.								
				rine levels (ie, 1–3 ppm in pools and 3– nfection (and contaminant oxidation).					
Algae Control	 At recommendation 	nended concentration	ns, copper acts algista	tically.					
	•Copper is	most effective again	st mustard algae and	least effective against black algae.					
Oxidation of Contaminants	•Copper ar	nd silver do not contri	ibute to oxidation of sy	vimming pool water contaminants.					
	 Copper and silver do not contribute to oxidation of swimming pool water contaminants. The low level of recommended chlorine level of 0.2 ppm will not be sufficient to adequately 								
		her contaminants.		PP					
Staining/Discoloration	•Silver tend	is to adsorb onto sur	faces creating a poter	ntial for staining.					
	•Copper can cause visible localized staining above 0.2–0.3 ppm.								
				on of pool surfaces will occur over time					
	since all ac	ded copper and silve	er eventually precipitat	e from the water.					
	•For this r		silver containing alg	icides should be used only on an as					
Electrode Maintenance	Scale buil	d-up on the electrode	es necessitates period	ic cleaning with acid.					
NSF Approval		ave not been approv							
Cost	 Ionizers a 	re very expensive giv	ven their minimal effect	t on disinfection.					
		Gallons	Ionizer	Replacement Electrodes					
	Pool	10,000–25,000	\$1,000-\$1,500	\$100–\$150					
	Spa	200-1,000	\$400-\$900	\$100–\$150					

, .

······································		9. CC	PPER	-SILVER CARTRIDO	GES					
Device Description	•According to the patent literature the heart of the device is a canister or cartridge containing									
	a carrier (ie, granular alumina coated with ~1% metallic silver), copper metal, and a filler									
	material (ie, activated carbon).									
						. In addition, copper is				
				form instead of copp		·				
						an inlet and outlet and a valve				
			-	stallation after sand c						
Deleviate of Occupition		•Small cartridges are also available and are installed inside cartridge filters on pools or spas.								
Principle of Operation		•Flow of water (~30% of full flow) through the unit quickly dissolves the copper and very slowly dissolves the metallic silver.								
Technical Assessment	•The ca	rtridge only	works	when the pump is or	n and adds very lit	tle to the overall disinfection				
						of the pool water (<3% in				
				n the water treats 100						
						een known since the 1930's.				
						d up of organic slimes,				
				aning (White 1972).						
Aqueous Copper Conc.		0.06 ppm								
Aqueous Silver Conc.		0.06 ppm								
Recommended Sanitizers			th 50 p	pm cyanuric acid and	d maintain 0.4-0.6	ppm av. Cl				
	Spas:			Potassium Monoper		Av. Cl				
	Sanit	izer Option		Ppm		as Dichlor				
	Each U	se Dosage		9.3 (equivalent to 4	.3 ppm av. Cl)	~4 ppm				
	Weekly	Dosage		~28 (equivalent to ~	~12 ppm					
Maintenance of Available	The lo	w recomm	ended	av. Cl (0.4 – 0.6 ppm) will be difficult to	measure because it is near				
Chlorine	the bott	om of the s	cale. •	It will also be difficult	to maintain unde	r the twin demands of UV				
	decomp	osition and	l conta	minant oxidation.						
Disinfection Data: Pools	•Tests	showed tha	t low c	oncentrations of copp	per (0.025 ppm) a	nd silver (0.03 ppm) provided				
Sandel 1992				fect on the disinfection	n rate alone or in	chlorine sanitized and				
Disinfontion Date: Cross		ed pool wat								
Disinfection Data: Spas Gerba & Naranjo 1999					even though unit	had been in operation for 3				
Gerba & Naranjo 1999				of bacteria.						
Disinfection Concerns				o effect on the disinfe						
Disinfection Concerns	Pools •Tests show that the cartridge has a minimal effect on disinfection, consequently, the									
		recommended chlorine level of 0.4–0.6 ppm is considered too low for effective disinfection in stabilized pools								
	disinfection in stabilized pools. Spas •Disinfection may be affected, since PMPS is not as thermally stable as chlorine.									
	Spas			abilized pools.	•••	red too low for effective				
Algae Control	-	 Disinfect 	ion ma	abilized pools. ly be affected, since F	PMPS is not as the	red too low for effective ermally stable as chlorine.				
Algae Control	•The co	•Disinfect	ion ma	abilized pools. ly be affected, since F	PMPS is not as the	red too low for effective				
_	•The co algae c	•Disinfect oncentratior ontrol.	ion ma ns of ch	abilized pools. y be affected, since F Norine and copper an	PMPS is not as the disilver are considered at the distribution of	red too low for effective ermally stable as chlorine. dered too low for effective				
	•The co algae c	•Disinfect oncentration ontrol. •The reco	ion ma ns of ch ommen	abilized pools. y be affected, since F llorine and copper an ded chlorine level of (PMPS is not as the disilver are considered at the distribution of	red too low for effective ermally stable as chlorine.				
	•The co algae c Pools	•Disinfect oncentration ontrol. •The reco oxidation	ion ma ns of ch ommen of bath	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (ler contaminants.	PMPS is not as the disilver are consident of the distribution of t	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective				
	•The co algae c	Disinfect oncentration ontrol. The reco oxidation •PMPS do	ion ma ns of ch ommen of bath ecompo	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (ler contaminants.	PMPS is not as the disilver are consident of the distribution of t	red too low for effective ermally stable as chlorine. dered too low for effective				
Algae Control Contaminant Oxidation	•The co algae c Pools	Disinfect oncentration ontrol. The recc oxidation •PMPS do Sheet No	ion ma ns of ch ommen of bath ecompo	abilized pools. y be affected, since F nlorine and copper an ded chlorine level of (ner contaminants. oses at 20%/hour and	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% dece	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u>				
Contaminant Oxidation	•The co algae c Pools Spas	Disinfect oncentration ontrol. •The recc oxidation •PMPS de Sheet No •This ther	ion ma ns of ch ommen of bath ecomp . <u>11).</u> mal ins	abilized pools. y be affected, since F nlorine and copper an ded chlorine level of (er contaminants. oses at 20%/hour and stability may affect its	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% dece	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u>				
Contaminant Oxidation	•The cc algae c Pools Spas	Disinfect oncentration ontrol. •The recc oxidation •PMPS de Sheet No •This ther d	ion ma ns of ch ommen of bath ecomport . <u>11).</u> mal ins •60–80	abilized pools. y be affected, since F nlorine and copper an ded chlorine level of (er contaminants. oses at 20%/hour and stability may affect its % reduction.	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y.				
Contaminant Oxidation	•The co algae c Pools Spas	Disinfect oncentration ontrol. •The recc oxidation •PMPS de Sheet No •This ther d ment o	ion ma ns of ch ommen of bath ecomport . 11). 'mal ins 060-80 •Since	abilized pools. y be affected, since F nlorine and copper an ded chlorine level of (ter contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the				
Contaminant Oxidation	•The cc algae c Pools Spas	Disinfect oncentration ontrol. •The recc oxidation •PMPS de Sheet No •This ther d c ment c	ion ma is of ch ommen of bath ecomp . 11). mal ins •60–80 •Since cartridg	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (her contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca je is unlikely to delive	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the up to 80% reduction in chlorine				
Contaminant Oxidation	•The cc algae c Pools Spas	Disinfect oncentration ontrol. •The recc oxidation •PMPS do <u>Sheet No</u> •This then d •ment	ion ma is of ch ommen of bath ecomp . 11). mal ins •60–80 •Since cartridg	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (her contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca je is unlikely to delive and allow effective dis	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the				
Contaminant Oxidation Chlorine Usage	•The cc algae c Pools Spas Claime Assess	Disinfect oncentration ontrol. •The reco oxidation •PMPS do <u>Sheet No</u> •This then d c	ion ma ns of ch ommen of bath ecomp . 11). mal ins 60–80 Since cartridg usage a oxidatio	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (ter contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca le is unlikely to delive and allow effective dis- on.	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u sinfection, algae c	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the up to 80% reduction in chlorine				
Contaminant Oxidation Chlorine Usage NSF Approval	•The cc algae c Pools Spas Claime Assess	Disinfect oncentration ontrol. •The reco oxidation •PMPS do <u>Sheet No</u> •This then d c	ion ma ns of ch ommen of bath ecomp . 11). mal ins e60-80 eSince cartridg usage a oxidatic tridges	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (her contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca je is unlikely to delive and allow effective dis	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u sinfection, algae co ved.	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the up to 80% reduction in chlorine ontrol, and contaminant				
_	•The cc algae c Pools Spas Claime Assess		ion ma ns of ch ommen of bath ecomp . 11). mal ins 60–80 osince cartridg usage a oxidatic tridges ne	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (ter contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca tests show that the ca le is unlikely to delive and allow effective dison. have not been appro	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u sinfection, algae c	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the up to 80% reduction in chlorine				
Contaminant Oxidation Chlorine Usage NSF Approval	•The cc algae c Pools Spas Claime Assess		ion ma ns of ch ommen of bath ecompo . 11). mal ins e60-80 eSince cartridg usage a cartridg usage a coxidatic tridges ne ns	abilized pools. y be affected, since F lorine and copper an ded chlorine level of (ter contaminants. oses at 20%/hour and stability may affect its % reduction. tests show that the ca le is unlikely to delive and allow effective dis on. have not been appro	PMPS is not as the d silver are consid 0.4–0.6 ppm is co d will be 80% deco oxidative capacit artridge does not r on the claim of u sinfection, algae co ved. Replacement	red too low for effective ermally stable as chlorine. dered too low for effective nsidered too low for effective omposed in 8 hours <u>(see</u> y. enhance disinfection, the up to 80% reduction in chlorine ontrol, and contaminant Cartridge				

			10. ZINC-SILVER CARTRIDGES					
System Description	Pools	•The ur	it consists of a plastic housing with an inlet and outlet with a flow control valve					
			emovable cartridge that contains zinc, silver and limestone.					
		 An insert containing Trichlor tablets is available as well as a flow cont chlorine operation. 						
	Spas	 A cartr 	idge containing the mineral reservoir is designed to fit inside the cartridge filter.					
Principle of Operation		of water through the cartridge can slowly dissolve zinc and silver.						
			such as bacteria may become attached to the surface of the minerals within					
Technical According		tridge and undergo inactivation.						
Technical Assessment		•The cartridge works only when the pump is on and adds very little to overall disinfection						
			ninute the cartridge treats less than 0.3% (<3% in spas) of the pool water,					
	the second s		e in the water treats 100%.					
Aqueous Zinc Conc.			silver cartridges, build-up of organic slimes may affect the performance.					
Aqueous Silver Conc.		a availab						
Sanitizer Options	Pools	a availab						
Samuzer Options	FUUIS	•Mainta	in 0.5–1.0 ppm av. Cl.					
			once a week with 1 lb. calcium hypochlorite or 1 lb. potassium monopersulfate per 10,000 gals.					
		•For non-chlorine operation shock 2–3 times a week with PMPS.						
	Spas							
			once a week with Dichlor or PMPS according to manufacturers					
			nendations.					
Maintenance of	• It will	be difficult to maintain 0.5–1.0 ppm av. Cl under the twin demands of decomposition and						
Available Chlorine		inant oxidation.						
Disinfection Concerns								
			te disinfection in stabilized pools.					
		• The no	on-chlorine option is not expected to provide adequate disinfection or algae					
			on their poor bactericidal properties, silver and zinc ions are not expected to					
			antly increase the disinfection rate.					
			absence of chlorine, the cartridge itself provides a very slow bacterial kill rate.					
	Spas							
			ds of the higher bather density in spas (Brigano and Carney 1984).					
			ing once a week is considered insufficient to oxidize bather contaminants.					
			ne will reduce the effectiveness of silver due to insolubility of silver bromide.					
Algae control	•Becau	se the co	ncentration of zinc and silver in the pool water are not available, their effect on					
	algae c	ontrol car	nnot be assessed.					
Oxidation of			nended chlorine level of 0.5–1.0 ppm is considered too low for adequate					
Contaminants		inant oxic						
			pool with PMPS is much less effective than with chlorine, eg, 1 lb of PMPS is					
Chloring Users			y 1/3 of a 1-lb shock dose of chlorine.					
Chlorine Usage	Claims		•50–67% reduction.					
	Assess	ment	•The cartridge is unlikely to deliver on the claim of reduced chlorine usage and					
Cost	20,000)-gal. Poo	allow effective disinfection, algae control, and contaminant oxidation.					
		gal. Pool						
		00-gal S						
	1200-1,0	vuo-yai O						

	11. POTAS	SIUM MONO	PERSULI	FATE (PMPS)					
Formula	•2KHSO5•KHSO4•								
Assay	•85%								
Active Oxygen	•~4.5%								
Form	•White granular powder								
Uses	Non-chlorine Shock in Pools •Dosage: 1lb/10,000 gals.								
	Sanitizer/Oxidizer in Spas •Used alone or in combination with chlorine or silver.								
Stability in Water				Decomposit	tion Rate (% per hour)				
Wojtowicz 2000	Sunlight				~23				
	Room Temperatur	re (~70°F)			~4				
	Spa Temperature				~20				
Disinfection in Pools					itable as a swimming pool				
Gerba & Naranjo 1999	disinfectant with in	activations of							
Disinfection in Spas				6 Inactivation @					
Gerba & Naranjo 1999	Time (mins.)	S. faeca	lis	E. hirae	P. aerugenosa				
	2	58		28	15				
	15	>99.999		>99.9999	>99.9999				
	•Data for E. coli sh								
	•Data for chlorine (S. faecalis and 99.				s of 99.99% for				
Algae Control	No data are availa	able on the ef	fect of PM	PS on swimming	pool algae.				
Oxidation of	Ammonium ion			 No reaction. 					
Contaminants	Ammonia			 No data avai 	lable.				
	Monochloramine			Nitrate ion is	main oxidation product.				
	Urea			Nitrate ion is	main oxidation product.				
	Amino Acids, Cre	atinine, Uric	Acid, etc	 •No data avai 	ilable.				
	Other Organic Ma	tter		 No data avai 	ilable.				
Disadvantages and	 Oxidizes nitrogen 	compounds t	o nitrate i	on, which is a nut	rient for bacteria and algae.				
Deficiencies	 Not stable in wate 	r subjected to	heat or e	xposed to sunlig	ht.				
	•Reduces pH and	alkalinity due	to formati	on of bisulfate ior	۱.				
	2KHSO₅•KHSO₄•K	2SO₄ → 3KH	SO₄ + K₂S	6O₄ + 2O					
	3HSO4 + 3HCO3 ·	\rightarrow 3SO ₄ ²⁻ + 3	CO ₂ + 3H;	20					
					1/3 of a 1-lb. chlorine shock.				
1	Man and the first		044 0	2/lb. equivalent a					

	12. POTASSIUM PE	ROXYDISULFA	TE (PPS, PERSU	LFATE)	······································				
Formula	•K ₂ S ₂ O ₈								
Assay	•>95%								
Form	•White granular powder								
Stability in Water		Decomposition Rate (%/day)							
	Sunlight				~5				
	Swimming Pool Te	emperature		Ve	ry slow				
	Spa Temperature			Vei	ry slow.				
Uses	 Blended with Dich 								
	 As non-chlorine ox 	kidizing agent us	ually in combination	on with copp	ber.				
Effect on Disinfection	 No data are availa 								
	 By comparison wit 	th monopersulfa	te, persulfate itself	probably ha	as negligible anti-bacterial				
	properties even in t	he presence of	copper or silver io	ns.					
Effect on Algae Control	 No data is available 	le.							
	 Best guess is that 	persulfate itself	has negligible ant	i-algal prope	erties.				
Oxidation of Contaminants	•PPS is normally a sluggish oxidant compared to potassium monopersulfate and requires								
	activation as discussed below.								
	Effect of Sunlight •Sunlight dissociates persulfate into reactive sulfate ion radicals:								
	$S_2O_8^{2-} + UV \rightarrow 2SO_4^{-}$								
	 Sulfate ion radicals are effective in oxidation of organic matter 								
	(Minisci et al 1983).								
	Effect of Silver •Silver (and possibly copper) ions can catalyze oxidation reactions of								
	and Copper lons	1 ·	a formation of diva	alent silver (or trivalent copper) (Minisci				
		et al 1983).							
				ess at swimming pool concentrations has not been					
Deficiencies		documented	· · · · · · · · · · · · · · · · · · ·						
Deficiencies	Normally reacts slowly with bather contaminants.								
	•Reduces pH and alkalinity due to formation of bisulfate ion on decomposition:								
	$S_2O_8^{2-} + H_2O \rightarrow 2H$	$1SO_4^- + O_2^-$							
Family 1 Parts 1	2HSO4 + 2HCO3		2 + H ₂ O						
Formulated Product	Product	Application	Dosage		Cost				
			Copper	PPS					
	PPS with 1.6%	Pools and	ppm 0.2–0.8	ppm 15 ppm	\$66/10 lb				
	copper sulfate	Spas	(0.2–0.8 (0.2–0.4 ideal)	1.5 ppm	\$66/10 lb.				
	Concerns		s. $>0.2-0.3$ ppm c		aining				
			disinfection and c		anniy.				
				ixidation.					
······		 Product is ex 	pensive.	······					

	13. POLYHEXAMETHYLEN	E BIGUANI	DE (PHMB			
System Components ^A	Component	Function				
	20 % PHMB	E		Bacteriostat		
	Quat ^B	Algistat				
	30% Hydrogen Peroxide	Oxidant				
	Enzyme Cleaner	Filter Cleaner				
	Chelating Agent	Trace Metal Chelation				
		Swimming Pool Concentrations		Testing and Adjustment		
	РНМВ	6–10 ppm active		Weekly		
	Quat	2–2.5 ppm active		Weekly		
	Hydrogen Peroxide	0–27 ppm		Every 3–4 weeks		
Disinfection Data	Organism					
Block 1991	E. coli		4 ppm			
	S. aureus		4 ppm			
	P. aerugenosa		20 ppm			
Swimming Pool Disinfection	•In a first year test (90 days), 27% of the of water samples showed bacterial counts >200					
Testing of PHMB System		cfu per mL vs. 4% for a chlorine control pool.				
<u>Sandel 1996</u>	•In a second year test (100-days), 57% of the of water samples showed bacterial counts >200 cfu per mL vs. 0% for a chlorine control pool.					
	•The incubation periods for the two tests were 7 and 2 days, respectively, indicating development of PHMB-resistant bacteria.					
	•Formation of bacterial slimes was also observed during the tests.					
Algae Control Data			MIC (ppm)			
<u>del Corral & Johnson 1996</u>	Algae		Quat	РНМВ		
	Chlorella pyrennoidosa (Gree		1.0	≤0.5		
	Phormidium faveolarum (Black)		5.0	<0.5		
	Eustigmatos vischeri (Yellov		≥1 <5	> 20		
Oxidation of Contaminants	•Hydrogen peroxide is a poor oxidant for ammonia, urea, and other organic matter.					
Incompatibilities ^A	Chlorine and bromine oxidizers.					
	•Ozone and persulfate oxidizers.					
	Copper and silver-based algicides.					
	Most clarifiers and cleaners.					
	Some stain and scale inhibitors.					
Potential Problems	•Excessive use of PHMB, Quat, and Enzyme can cause foaming and impart odor and off-taste to the water.					
	•Build-up of organic matter.					
	•Development of persistent haziness and cloudiness.					
	•Development of biological growths, eg, pink slime and water mold.					
	•Development of PHMB resistant bacteria (Sandel 1996).					
Cost	More expensive than chlorine.					

A) Product literature.

B) Alkyldimethylbenzyl ammonium chloride.

C) Minimum inhibitory concentration.

14	. ULTRAVIOLET (U	V) LIGHT AND H	YDROGEN PEROX	IDE			
System	•A flow through cell containing a UV lamp (emitting ~254 nm radiation).						
	•Hydrogen peroxide.						
Principle of Operation	•The water, dosed with ~40 ppm hydrogen peroxide, flows through the cell.						
· · · · · · · · · · · · · · · · · · ·							
	•UV light (ie, UV photons) dissociates hydrogen peroxide (H ₂ O ₂) into reactive hydroxyl radicals (HO) that are the actual oxidizing agent:						
	$H_2O_2 + UV \rightarrow 2HO$						
Application	•The UV light itself also can inactivate microorganisms such as bacteria.						
Factors Affecting Disinfection	•Small spas.						
Rate	UV Light		•Although UV light can inactivate 99.9% of <i>E coli</i> in 1 min. (White				
Nate			<u>1972</u>), the residence time of the water in the UV cell is much less				
			than 1 min.				
			•For example, assuming 1 gal. volume for the UV cell attached				
			to a 300-gal. spa with a water flow rate of 10 gal./min. the				
			residence time of the water in the cell is only 0.1 min.				
			•UV light intensity decreases with time.				
			idity and build up of films on the lamp reduces UV				
	Hydrogen Perox	light intensity.					
	I I yulogen Felox	1	 Hydrogen peroxide is a very poor disinfectant. 500 ppm inactivates 99% of <i>E. coli</i> in 10-30 mins. 				
	Hydroxyl Radica			2. <i>coll</i> in 10-30 mins.			
Disinfaction Concerns							
Disinfection Concerns Contaminant Oxidation Data	No sanitizer residual in the water outside the cell.						
	•The kill time of microorganisms such as bacteria is very long because only about 1/30 of						
	the spa water flows through the cell per minute and the residence time of the spa water in						
	the UV cell is much less than 1 minute.						
	Bacteria can repair damage from UV light.						
Wojtowicz 2000	Conditions •Hydrogen peroxide: 50 ppm						
	Nitrogen: 2.26 ppm per compound Altaliaity 20 ages						
		•Alkalinity: 80 ppm					
		•Calcium hardness: 250 ppm					
		•pH 7.4					
			Γ =~23°C.				
			UV light irradiation time: 4 hours % Yield of % TOC ^B Reduction				
	Compound		% Yield of Nitrate ^A	% IOC Reduction			
	Ammonia	Ammonia					
	Urea	- 2	0	2 ^c			
	Creatinine	1.5	1	57			
	Glycine	65	0	70			
	α-Alanine	59	0	46			
	Valine	63	2	59			
	Lysine	<u>35</u> 58	0	47			
	Glutamic Acid			69			
	A) Lack of nitrate formation indicates that ammonia per se or byproduct ammonia is exceedingly slowly oxidized even by reactive HO radicals.						
	B) Total organic carbon. C) Calculated.						
Spa Test	•A UV-hydrogen peroxide system (15 gal/min.) was evaluated over a 3-week period in a						
044 1631	250 gal and at 40		io gai/min.) was ev	auateu over a s-week period in a			
	250 gal spa at 100°F using a 4-6 hour duty cycle and a synthetic bather insult. Analysis showed no oxidation of urea after 107 hours of operation.						
NSF Approval	•No NSF approval (NSF 1985).						
Cost							
0031	 A system for a small spa will probably cost several hundred dollars. The system cannot provide adequate disinfection and contaminant oxidation. 						
Overall Assessment			ate disinfa stars - 1	annteminent evideties			

15. REACTION OF ANCILLA	RY CHEMIC	ALS WITH CH	ILORINE (CI) AND BROMINE (Br) ^A		
	Reacts with CI or Br ^B	Forms Combined CI or Br ^C	Other Potential Problems		
[Algicides]					
Alkyldimethylbenzylammonium chloride Dialkylmethylbenzylammonium chloride Alkyldimethyldichlorobenzylammonium	Yes Yes Yes	Yes Yes Yes	Excessive concentrations can cause foaming.Can precipitate by formation of flocs that can		
chloride	100		cause filter problems. •Can form bromamines and chloramines.		
Poly[oxyethylene(dimethylimino)ethylene- (dimethylimino)ethylene dichloride]	Yes	Yes	•Can form bromamines and chloramines.		
Copper Citrate or Gluconate	Yes		•Excessive concentrations can cause staining.		
Copper Triethanolamine	Yes	Yes	 Excessive concentrations can cause staining. Can form bromamines and chloramines. 		
Silver Compounds (eg, silver oxide)			•Excessive concentrations can cause staining.		
[Antiscalants and Stain Preventers]					
Organophosphonates (eg, hydroxyethyl- idene diphosphonic acid)	Yes		•Decomposition by sunlight and chlorine produces phosphate ions.		
			•Increases concentration of phosphate, which is a nutrient for bacteria and algae and can cause cloudy water due to precipitation of calcium phosphate.		
Polymeric (eg, polyacrylates)	Yes				
[Clarifiers/Flocculating Agents]					
Inorganic (eg, aluminum sulfate)					
Polymeric (eg, polydimethyldiallylammo- nium chloride)	Yes	Yes			
[Defoamers]					
Polydimethylsiloxane	Yes				
[Degreasers]					
Enzymes	Yes				
[Tints]					
Organic Dyes	Yes				
[Fragrances]					
Organic compounds such as alcohols, aldehydes, ketones, and esters formulated with other reactive organic ingredients such as propylene glycol and glycerine.	Yes		•Since they apparently can cause foaming, they are formulated with a defoamer such as polydimethylsiloxane.		

A) Ancillary chemicals can also react with non-chlorine oxidizing agents such as potassium monopersulfate.

B) The rate of reaction will depend on the concentration and functionality of the organic matter as well as the chlorine (or bromine) concentration, temperature, and sunlight duration and intensity.

C) The greater the nitrogen content, the greater the potential for formation of combined chlorine or bromine.

References

- Adams, V.D., et al, "An Evaluation of an Electrolytic Process for the Removal of Ammonia and Urea from Simulated Spa Water", Symposium Series Vol. IV, pp 44-52, 1999, NSPI National Meeting, Las Vegas, NV,
- Adamson, R.P. and M.R. Sommerfeld, "Laboratory Comparison of the Effectiveness of Several Algicides on Isolated Swimming Pool Algae", *Applied and Environmental Microbiology*, 39(2)(1980):348-353.
- ANSI/NSPI-4 199X Standard for Aboveground/ Onground Residential Swimming Pools.
- ANSI/NSPI-5 1995 Standard for Inground Residential Swimming Pools
- AOAC, Official Methods of Analysis of the American Association of Official Analytical Chemists, 15th Edition, 1990, Arlington, VA.
- Bauer, C. R. and V. L. Snoeyink, "Reactions of Chloramines with Active Carbon", Journal of the Water Pollution Control Federation, 45(11)(1973):2290-2301.
- Block, S. S., "Disinfection, Sterilization, and Preservation", Lea & Febiger, Philadeliphia, PA, Fourth edition, 1991.
- Brigano, F.A. and J. F. Carney, paper presented at the 84th meeting of the American Society of Microbiology, St. Louis, MO, March 4-9, 1984.
- del Corral, F. and B. Johnson, "Comparitive Algicidal, Algistatic, and Bacteriostatic Evaluations of Selected Commercial Algicides", Symposium Series Vol. I, pp 18-25, 1996, NSPI National Meeting, Phoenix, AZ,
- DIN 19643 (German Industry Standard: In English): Treatment and Disinfection of Swimming Pool and Bathing Water (Berlin, Beuth Verlag, 1984).
- Dohan, J.M. and W.J. Masschelein, Ozone Science and Engineering 9(1987): 315-.
- Dorfman, L.M. and G.E. Adams, "Reactivity of the Hydroxyl Radical in Aqueous Solution", National Bureau of Standards, NSRDS-NBS 46 (Washington, DC, US Government Printing Office, 1972).
- Dumas, Bob "Bromine Stabilizer Passes Early Test", *Pool & Spa News*, January 13, 1999, pp 1-2.

- Eichelsdorfer, D., "Use of Ozone for Treatment of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, pp. 82 and 91.
- Eichelsdorfer, D. and J. Jandik, "Long Contact Time Ozonation for Swimming Pool Water Treatment", Ozone Science and Engineering 7(2)(1985):93-106.
- Elliasson, B. and U. Kogelschatz, "Ozone Generation with Narrow-Band UV Radiation", Ozone Science and Engineering 13(3)(1991):365-373.
- Fitzgerald, G. P., "Loss of Algicidal Chemicals from Swimming Pools", *Applied Microbiology* 8 (1960): 269-274.
- Fitzgerald, G. P., and M. E. DerVartanian. "Factors Influencing the Effectiveness of Swimming Pool Bactericides." Applied Microbiology 15 (1967): 504-509.
- Fitzgerald, G. P., "Compatibility of Swimming Pool Algicides and Bactericides", *Water and Sewage Works*, 115 (1968): 65-71.
- Fitzgerald, G. P. and D. F. Jackson, "Comparative Algicidal Evaluation Using Laboratory and Field Algae", Journal of Aquatic and Plant Management 17 (1979): 66-
- Gardner, J. "Chloroisocyanurates in the Treatment of Swimming Pool Water." *Water Research* 7 (1973): 823-833.
- Gerba, C.P. and J. Naranjo, University of Arizona, Unpublished Data, 1999.
- Grenier, J. and R. Denkewicz, "Improved Test Method for the Evaluation of Algicides and Algistats for Swimming Pools", Symposium Series Vol. II, pp 63-68, 1997, NSPI National Meeting, Chicago, ILL.
- Hartwig, W., "To DIN or not to DIN: Ozonation of Pool Water in Public and Commercial Pools", Journal of the Swimming Pool and Spa Industry, 2(1) 1996:25-33.
- Hafer, D., "A Field Evaluation of the Bi-Polar Oxygen Sanitation System/Mineral Purification System", Journal of the Swimming Pool and Spa Industry, 1(3)1995:39-51.
- Hass, C. N. and R. S. Engelbrecht "Chlorine Dynamics during Inactivation of Coliforms, Acid-Fast Bacteria, and Yeasts", *Water*

Research 14 (1980):1749-

- Hoff, J. C., "Inactivation of Microbial Agents by Chemical Disinfectants", U.S. Environmental Protection Agency, Report no. EPA/600/2-86/ 067, 1986.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - I: Non-dissociating Organic Compounds", Water Research, 17(1983):173-183.
- Hoigne, J. and H. Bader, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - II: Dissociating Organic Compounds", Water Research, 17(1983):184-185.
- Hoigne, J., H. Bader, and W. R. Haag, "Rate Constants for Reaction of Ozone with Organic and Inorganic Compounds - III: Inorganic Compounds and Radicals", Water Research, 19(1985):993-1004.
- Kinman, R.N., Water and Wastewater Disinfection with Ozone", Critical Reviews of Environmental Control, 5(1975):141-152,
- Kurzman, G. E., "Ozone-Granular Activated carbon for Disinfection and Purification of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 106.
- Kutz, S. M., L. K. Landeen, M. T. Yahya, and C.
 P. Gerba, "Microbiological Evaluation of Copper-Silver Disinfection Units", 4th Conference on Chemical Disinfection, Binghamton, NY April 10-13, 1988.
- Kuwabara, J. S. and H. V. Leland, "Adsorption of Selanastrum capricornutum (Chlorophyceae) by Copper", *Environmental Science and Technology* 5(1986):197-
- Lange's Handbook of Chemistry, J.A. Dean, ed., McGraw-Hill Book Co., New York, 13th Edition, 1985.
- Legend Labs, St. Paul, MN
- Marks, H. C. and F. B. Strandskov, "Halogens and their mode of action", Annals of the New York Academy of Sciences 53(1950):163-
- Minisci, F., A. Citterio, and C. Giordano "Electron Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry." Accounts of Chemical Research 1983, 16, 27-32.

Volume 5 Number 1 – Spring 2004

- Nalepa, C.J. et al, "Development of a Bromine Stabilizer for Outdoor Pools", Symposium Series Vol. I, pp 12-17, 1999, NSPI National Meeting. Las Vegas, NV.
- National Sanitation Foundation (NSF), Ann Arbor, MI (see website at www.NSF.com)
- National Spa and Pool Institute (NSPI), Alexandria, VA.
- Nelson, G.D. "Special Report 6862 Swimming Pool Disinfection with Chlorinated-striazinetrione Products." Monsanto Chemical Co. St. Louis, MO, March 1967.
- Olin Corporation. Unpublished Data on Swimming Pool Evaluation of Electrochemical Generation of Bromine. 1983.
- OSHA, U.S. Occupational Safety and Health Administration, Washington, DC; see Federal Register 40, 47261 (1975).
- Ozone in Water Treatment: Applications and Engineering, B. Langlais, D. A. Reckhow, and D. R. Brink, Eds. Lewis Publishers, Chelsea, MI, p113, 1991.
- Palmer, C. M. and T. E. Maloney, "Preliminary Screening for Potential Algicides", *Ohio Journal of Science*, 55(1955):1-.
- Penny, P.T. and R.J.G. Roycroft, "Swimming Pool Dermatoses associated with the use of Bromine Disinfectant" *British Medical Journal* August 13, 1983.
- Rice, R. G. "Chemistries of Ozone for Municipal Pool and Spa Water Treatment", Journal of the Swimming Pool and Spa Industry, 1(1)1995:25-44.
- Sandel, B.B., Unpublished Data on Testing of Copper-Silver Cartridge, 1992.
- Sandel, B. B., "Disinfection with Chlorine Products – Some Lessons Learned", Symposium Series Vol. I, pp 80-85, 1996, NSPI National Meeting, Phoenix, AZ,
- Shapiro, R. and F.E. Hale, "An Investigation of the Katadyn Treatment of Water with Particular Reference to Swimming Pools", *Journal of the New England Water Works* Association, 51(1937):113-
- Snoeyink, V. in Water Quality and Treatment, F.
 W. Pontius, Ed., 4th Edition, McGraw-Hill, Inc., New York, NY, pp. 812-813, 1990.
- Stumm, W. "The Decomposition of Ozone in Aqueous Solution", Helvetica Chimica Acta,

37(1954):773-

- Taylor, D. S. and J. D. Johnson, "Kinetics of Viral Inactivation by Bromine", in A. J. Rubin, ed., Chemistry of Water Supply and Treatment, Ann Arbor Publishers. Ann Arbor, MI, 1975, pp 369-407.
- Tiefenbrunner, F., "Problems with the Direct Ozonation of Swimming Pool Water", in Ozone Treatment of Waters for Swimming Pools, R. G. Rice, Ed., International Ozone Association, Norwalk, CT, 1982, p. 152.
- Watt, P.M, D.I. Kennedy, J. Naranjo, J. Sandoval, and C.P. Gerba, "Comparison of the Disinfectant Capabilities of Various Spa Products", Symposium Series Vol. IV, pp 71-76, 1999, NSPI National Meeting, Las Vegas, NV.
- · White, C.G., Handbook of Chlorination, Van Nostrand Rheinhold, New York, 1972.
- Wojtowicz, J. A., Unpublished Data on Testing of UV Ozonators, 1985.
- Wojtowicz, J. A., Unpublished Data on Testing of Copper-Silver Ionizer, 1988.
- Wojtowicz, J. A., Unpublished Data on Ozone Reactions, 1989.
- Wojtowicz, J. A., Unpublished Data on Testing of UV-Hydrogen Peroxide, 1989.
- Wojtowicz, J. A., Unpublished Data on Bromine Stabilization, 2000.
- Wojtowicz, J. A., Unpublished Data on Potassium Monopersulfate Stability, 2000.

Wojtowicz, J.A., "Chlorine Monoxide, Hypochlorous Acid, and Hypochlorites", Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 5, John Wiley & Sons, Inc., New York, NY, pp 932-968, 1993.

- Wojtowicz, J. A. "Relative Bactericidal Effectiveness of Hypochlorous Acid and Chloroisocyanurates" Journal of the Swimming Pool and Spa Industry, 2(1) 1996:34-41.
- Wojtowicz, J. A. "Ozone", Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 17, 1996, John Wiley & Sons, Inc., New York, NY.
- Wojtowicz, J. A. "Fate of Nitrogen Compounds in Swimming Pool Water", Symposium Series Vol. III, 1998, pp 40-44, NSPI National Meeting, New Orleans, LA.
- Wojtowicz, J. A. Letter to the Editor, Journal of the Swimming Pool and Spa Industry, 3(1) 1998:41-43..
- Wojtowicz, J. A., "Chemistry of Nitrogen Compounds in Swimming Pool Water", Journal of the Swimming Pool and Spa Industry, 4(1) 2001:30-40.
- Wojtowicz, J. A., "Use of Ozone in the Treatment of swimming Pools and Spas" Journal of the Swimming Pool and Spa Industry, 4(1) 2001:41-53.
- Wojtowicz, J. A., "Cyanuric Acid Technology", Journal of the Swimming Pool and Spa Industry, 4(2) 2001:9-16.
- Wuhrman, K. and F. Zobrist, "Investigation of the Bactericidal Effet of silver in Water", Schweiz. Z. Hydrol. 20(1958):218-
- Zhang, Z., "Disinfection Efficiency and Mechanisms of 1-Bromo-3-chloro-5,5dimethylhydantoin", Ph. D. Thesis, Univ. of Houston, 1988.