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Self Accelerating Decomposition 
Temperature (SADT) 

SADT Test Procedure – The SADT test 
is carried out by placing the largest commercial 
package in an oven maintained at a constant 
temperature for 7 days. The minimum number of 
tests is two. If the sample survives at the lower 
temperature, fails at the higher temperature, and 
if the difference in the test temperature is not 
greater than 5.5°C, the SADT is then reported 
as an average of these two temperatures. 
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 Most chemical substances are subject to 
some decomposition at elevated temperatures, 
including some swimming pool and spa chem-
icals such as sanitizers and oxidizing agents. 
Department of Transportation (DOT) regulations 
governing the preparation of hazardous materials 
for transportation are described in the Hazard-
ous Materials Transportation Act. Under these 
regulations, the offering for transportation of a 
material that is liable to decompose or polymerize 
at a temperature of 130°F (54.4°C) or less with 
evolution of a dangerous quantity of heat ora 
gas is forbidden. The determination of whether 
a material is forbidden may be made by the Self 
Accelerating Decomposition Temperature (SADT) 
test. Accelerating rate calorimetry (ARC) and 
computer simulation offer an alternative to SADT 
testing and are discussed in this article.   

Accelerating Rate Calorimetry 
(ARC)

Procedure – In ARC, a sample (1–10 g) is 
placed in a metal bomb (e.g., Ti, volume ~10 mL) 
enclosed in a chamber maintained under adia-
batic conditions. The bomb is heated step–wise 
(typically 5°C increments) followed by a 5–min-
ute waiting period during which the calorimeter 
searches for evidence of self–heating by the 
sample. The calorimeter assumes an exotherm 
has started when the self–heat rate is  0.02°C/
min. Once an exotherm has started, heat from the 
sample decomposition raises the temperature of 
the bomb and the sample while the calorimeter 
inputs only suffi cient heat to offset losses to the 
outside air. The numerical data provided by the 
ARC consist of time, temperature, self–heat rate, 
and pressure. Plots of temperature vs time, self–
heat rate vs temperature, time to maximum rate 
vs temperature, pressure vs temperature, and 
pressure rate vs temperature can be generated. 
The data provided allow calculation of heat of 
decomposition, rate constant, activation energy, 
and critical temperature (or temperature of no 
return).

Thermokinetic Theory – The temperature 
dependence of reaction rate can be described 
by a modifi ed form of the Arrhenius equation 
(Townsend and Tou 1980):

1. k = AT2exp(–E/RT)

where: k = rate constant, A = pre–exponential 
factor, T = °K, E = activation energy, and R = 
gas constant (8.314J mol–1 K–1). Assuming zero 
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with increasing temperature which reaches a 
maximum and then falls off precipitously as the de-
composing material is exhausted. An illustrative 
plot is shown in Figure 1. The activation energy 
E is obtained from the slope (–E/R), which is 
determined by drawing a tangent at the beginning 
of the self–heat plot. Using temperatures of 104°C 
(377.15K) and 170°C (443.15), which correspond 
to self–heat rates of 0.01 and 6.0°C/min, yields a 
value of 32,188 cal/mol as shown below.

5. E = [Loge (r2/r1)]R/(1/T1 – 1/T2)
    E = [Loge (6.0/0.01)]1.987/(1/443.15 – 1/377.15) 
       = 32,188 cal/min.

The activation energy is also obtained from 
the temperature dependence of the rate constant 
and during critical temperature estimation (see 
discussion below). 

order (or initial rate kinetics), the energy balance 
for an adiabatic system is given by:

2. MCPdT/dt = HAT2exp(–E/RT)

where: M = mass, CP = heat capacity, t = time, 
and H = heat of reaction. Rearrangement gives 
the following differential equation for the initial 
rate of change of temperature with time due to 
self–heating:

3. dT/dt = [H/(MCp)]AT2exp(–E/RT)

Activation Energy – Taking Logs of both 
sides of equation 3 and rearranging gives:

4. Loge (dT/dt) = –E/RT + Loge {[H/(MCp)]AT2}

This is in the form: y = mx + b. Plotting Loge (dT/
dt) against 1/T shows an increasing self heat rate 
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Rate Constant – The rate constant k (and 
activation energy) can be determined from the 
ARC data via the following equation:

6. k =(dT/dt)/(Tf – Tt) min–1

where: dT/dt = self heat rate (°C/min), Tf = fi nal 
temperature (°C), and Tt is the temperature (°C) 
at time t (min) below maximum rate. A plot of 
loge k vs 1/T °K gives the activation energy (from 
the slope = E/R) and the pre–exponential (factor 
from the y intercept). 

Heat of Decomposition – The heat of 
decomposition (H) is calculated from the ARC 
provided adiabatic temperature rise and the  
(phi) factor, which allows allocation of the heat 
effect entirely to the sample. The phi factor for 
the ARC run of Figure 1 is calculated using the 
following equation where: MB (82.0g), MS (2.5g), 
CPB (0.11cal g–1 K–1) and CVS (0.5cal g–1 K–1) are 
the masses and heat capacities of the bomb and 
sample, respectively.

7.  = 1 + MBCPB/(MSCVS) = 1 + 82•0.11/(2.5•0.5)
       = 8.22

The value of H is obtained from the adiabatic 
temperature rise Tab. 

8. H = DTabCV 

          = (Tf – Ti) CV 
           = (180.3 – 122.7)•8.22•0.5 
           = 236.7 cal/g 

where: Ti and Tf are the initial and fi nal tempera-
tures, respectively.

Time to Maximum Rate – Integration of 
equation 3 and application of boundary conditions, 
gives the following equation for time to maximum 
rate (tmr), also referred to as time to explosion.

9. tmr  RT2/(EdT/dt)  RT2CPM/(kHE) 

Material/Equipment Time Constant – 
Under steady–state conditions, thermal equilibri-

um is represented by the following heat–transfer 
equation:

10. US(T – Ta) = MHAT2exp(–E/RT) 

where: U = thermal conductivity, S = container 
surface area, T is the product temperature, and 
Ta = ambient temperature. By varying Ta, it can 
be shown that there exists a unique temperature 
(the critical temperature Tc) above which thermal 
equilibrium cannot exist and thermal runaway 
occurs.

At the critical temperature (or temperature 
of no return), the adiabatic time to maximum 
rate tc =  (or time constant) is independent of 
decomposition – being a function of engineering 
parameters only. The time constant is calculable 
from the following equation:

11.  = MCP/(US)

Critical Temperature Estimate –Taking 
Logs of both sides of equation 9 and rearranging 
gives: 

12. 1/T = (R/E)Loge tmr – (R/E)Loge(RCPMT2/EH)

This is in the form: y = mx + bT2. Values of tmr are 
calculated using zero order self heat rates (SHR0) 
adjusted for the phi factor. Zero order self–heat 
rates are calculated using the equation of the 
tangent line drawn in Figure 1. The equation of 
the tangent line is:

13. Loge SHR0 = –16.199(1/T) + 38.345

Zero order self–heat rates adjusted for the 
phi factor are given by the following equation:

14. SHR0() = exp(–16.199(1/T) + 38.345)

A Log–Log plot of 1/T vs tmr should give 
a straight line with slope R/E (see Figure 2). 
Linear regression can be employed to obtain an 
equation of the line and allow extrapolation to 
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lower temperatures. The temperature at which 
the value of tmr equals the time constant t is equal 
to the critical temperature (Tc). 

 
Calculation of SADT from ARC – An 

equation for calculating TSADT can be derived 
from ARC data (Fischer and Goetz 1991). Heat 
generation (QG) is given by:

15. QG = Aexp(–E/RT)MH

Heat loss (QL) is given by: 

16. QL = US(T – T0) 

where: T0 = ambient air temperature. Equating 
QG and QL gives:

17. Aexp(–E/RT)MH = US(T – T0) 

Differentiation yields:

18. E/RT2Aexp(–E/RT)MH = US

Setting T = TC, and substituting from equation 17.

19. E/RTC
2US(TC – T0) = US

Cancellation and rearrangement gives:

20. T0 = TC – RTC
2/E

where: T0 = TSADT +273.15, TC = TNR + 273.15

TNR (@ ) = MCP/US

Determination of Critical 
Temperature via Computer 

Simulation

The diffusion of heat in a cylindrical container 
of material with internal heat generation can be 
described by the following second order partial 
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differential equation (Rohsenow and Hartnett 
1973): 

21. (1/)T/t = (1/r)T/r + 2T/r2 + 2T/x2 + Q/K

where: 
 = partial differential operator
T = temperature
t = time
r = radial distance 
x = axial distance
 = K/(Cp) = thermal diffusivity
K = thermal conductivity
 = bulk density 
Cp = heat capacity
Q = rate of heat generation 

The independent variable T in equation 21 is re-
lated to independent variable time (t) and spatial 
coordinates (x and r) in the conducting media by 
means of a heat balance differential equation 
derived from Fourier’s law of heat conduction 
Qn = –KT/n; where: Qn is a vector and n is a 
direction normal to the surface A. 

Although equation 21 cannot be solved an-
alytically, it can be solved using the methods of 
fi nite differences. The temperature is determined 
at only a fi nite number of discrete points called 
nodes. A nodal network in a cylindrical container 
can be obtained by subdividing the radial and axial 
distances in a vertical mid–plane into small seg-
ments. Due to symmetry, only a single mid–plane 
in a hemi–cylinder need be considered. Because 
the temperature of a particular node at some time 
is independent of the temperatures at other nodes 
at the same time, the temperature of that node 
(with vertical and horizontal coordinates i, j) at 
time (n + 1) can be calculated explicitly in terms 
of its temperature and that of its neighboring 
nodes at time (n). 

The partial derivatives in equation 21 are 
replaced with fi nite difference approximations 
obtained from a Taylor’s series expansion of the 
temperatures in the control volume to yield a 
system of algebraic equations. 

An alternate approach is to use the Fourier 
Heat Theorem:

22. dq/dt = KAdT/dx

where: dq/dt is the instantaneous rate of heat 
fl ow through cross sectional area A subject to a 
temperature gradient equal to dT/dx. The differ-
ential equation 22 can be approximated using 
fi nite increments () in place of infi nitesimal 
differentials (d) as follows: 

23. q = Q = KATt/x

Equation 23 can be applied to a generalized nodal 
cell. The vertical and horizontal heat fl ows in and 
out of the cell and the heat accumulated allow 
calculation of the temperature changes with time. 

A computer program can be written to 
perform the calculations as a function of time. 
The input to the computer program includes the 
physical and chemical data and constants listed 
above as well as the container dimensions. The 
heat generating term requires not only the heat 
of reaction but also the kinetics, which can be 
determined by differential thermal analysis (DTA) 
and differential scanning calorimetry (DSC). For 
example, the kinetic constants can be determined 
according to ASTM E698–79 (1984).
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